【Flink】Flink 自定义 redis sink

1.概述

内部要做 Flink SQL 平台,本文以自定义 Redis Sink 为例来说明 Flink SQL 如何自定义 Sink 以及自定义完了之后如何使用
基于 Flink 1.11

2.步骤

  1. implements DynamicTableSinkFactory
  2. implements DynamicTableSink
  3. 创建 Redis Sink

3.自定义 sink 代码

import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.sink.DynamicTableSink.DataStructureConverter;
import org.apache.flink.table.connector.sink.SinkFunctionProvider;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.factories.DynamicTableSinkFactory;
import org.apache.flink.table.factories.FactoryUtil;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.types.Row;
import org.apache.flink.types.RowKind;
import redis.clients.jedis.JedisCluster;

import java.util.*;

import static org.apache.flink.configuration.ConfigOptions.key;


/**
 * @author shengjk1
 * @date 2020/10/16
 */
public class RedisTableSinkFactory implements DynamicTableSinkFactory {
    
    public static final String IDENTIFIER = "redis";
    
    public static final ConfigOption<String> HOST_PORT = key("hostPort")
            .stringType()
            .noDefaultValue()
            .withDescription("redis host and port,");
    
    public static final ConfigOption<String> PASSWORD = key("password")
            .stringType()
            .noDefaultValue()
            .withDescription("redis password");
    
    public static final ConfigOption<Integer> EXPIRE_TIME = key("expireTime")
            .intType()
            .noDefaultValue()
            .withDescription("redis key expire time");
    
    public static final ConfigOption<String> KEY_TYPE = key("keyType")
            .stringType()
            .noDefaultValue()
            .withDescription("redis key type,such as hash,string and so on ");
    
    public static final ConfigOption<String> KEY_TEMPLATE = key("keyTemplate")
            .stringType()
            .noDefaultValue()
            .withDescription("redis key template ");
    
    public static final ConfigOption<String> FIELD_TEMPLATE = key("fieldTemplate")
            .stringType()
            .noDefaultValue()
            .withDescription("redis field template ");
    
    
    public static final ConfigOption<String> VALUE_NAMES = key("valueNames")
            .stringType()
            .noDefaultValue()
            .withDescription("redis value name ");
    
    @Override
    // 当 connector 与 IDENTIFIER 一直才会找到 RedisTableSinkFactory 通过 
    public String factoryIdentifier() {
        return IDENTIFIER;
    }
    
    @Override
    public Set<ConfigOption<?>> requiredOptions() {
        return new HashSet<>();
    }
    
    @Override
    //我们自己定义的所有选项 (with 后面的 ) 都会在这里获取
    public Set<ConfigOption<?>> optionalOptions() {
        Set<ConfigOption<?>> options = new HashSet<>();
        options.add(HOST_PORT);
        options.add(PASSWORD);
        options.add(EXPIRE_TIME);
        options.add(KEY_TYPE);
        options.add(KEY_TEMPLATE);
        options.add(FIELD_TEMPLATE);
        options.add(VALUE_NAMES);
        return options;
    }
    
    @Override
    public DynamicTableSink createDynamicTableSink(Context context) {
        FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
        helper.validate();
        ReadableConfig options = helper.getOptions();
        return new RedisSink(
                context.getCatalogTable().getSchema().toPhysicalRowDataType(),
                options);
    }
    
    
    private static class RedisSink implements DynamicTableSink {
        
        private final DataType type;
        private final ReadableConfig options;
        
        private RedisSink(DataType type, ReadableConfig options) {
            this.type = type;
            this.options = options;
        }
        
        @Override
        //ChangelogMode 
        public ChangelogMode getChangelogMode(ChangelogMode requestedMode) {
            return requestedMode;
        }
        
        @Override
        //具体运行的地方,真正开始调用用户自己定义的 streaming sink ,建立 sql 与 streaming 的联系
        public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {
            DataStructureConverter converter = context.createDataStructureConverter(type);
            return SinkFunctionProvider.of(new RowDataPrintFunction(converter, options, type));
        }
        
        @Override
        // sink 可以不用实现,主要用来 source 的谓词下推
        public DynamicTableSink copy() {
            return new RedisSink(type, options);
        }
        
        @Override
        public String asSummaryString() {
            return "redis";
        }
    }
    
    /**
     同 flink streaming 自定义 sink ,只不过我们这次处理的是 RowData,不细说
     */
    private static class RowDataPrintFunction extends RichSinkFunction<RowData> {
        
        private static final long serialVersionUID = 1L;
        
        private final DataStructureConverter converter;
        private final ReadableConfig options;
        private final DataType type;
        private RowType logicalType;
        private HashMap<String, Integer> fields;
        private JedisCluster jedisCluster;
        
        private RowDataPrintFunction(
                DataStructureConverter converter, ReadableConfig options, DataType type) {
            this.converter = converter;
            this.options = options;
            this.type = type;
        }
        
        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            logicalType = (RowType) type.getLogicalType();
            fields = new HashMap<>();
            List<RowType.RowField> rowFields = logicalType.getFields();
            int size = rowFields.size();
            for (int i = 0; i < size; i++) {
                fields.put(rowFields.get(i).getName(), i);
            }
            
            jedisCluster = RedisUtil.getJedisCluster(options.get(HOST_PORT));
        }

        @Override
        public void close() throws Exception {
            RedisUtil.closeConn(jedisCluster);
        }

        @Override
        /*
        2> +I(1,30017323,1101)
        2> -U(1,30017323,1101)
        2> +U(2,30017323,1101)
        2> -U(2,30017323,1101)
        2> +U(3,30017323,1101)
        2> -U(3,30017323,1101)
        2> +U(4,30017323,1101)
        3> -U(3,980897,3208)
        3> +U(4,980897,3208)
         */
        public void invoke(RowData rowData, Context context) {
            RowKind rowKind = rowData.getRowKind();
            Row data = (Row) converter.toExternal(rowData);
            if (rowKind.equals(RowKind.UPDATE_AFTER) || rowKind.equals(RowKind.INSERT)) {
                
                String keyTemplate = options.get(KEY_TEMPLATE);
                if (Objects.isNull(keyTemplate) || keyTemplate.trim().length() == 0) {
                    throw new NullPointerException(" keyTemplate is null or keyTemplate is empty");
                }
                
                if (keyTemplate.contains("${")) {
                    String[] split = keyTemplate.split("\\$\\{");
                    keyTemplate = "";
                    for (String s : split) {
                        if (s.contains("}")) {
                            String filedName = s.substring(0, s.length() - 1);
                            int index = fields.get(filedName);
                            keyTemplate = keyTemplate + data.getField(index).toString();
                        } else {
                            keyTemplate = keyTemplate + s;
                        }
                    }
                }
                
                String keyType = options.get(KEY_TYPE);
                String valueNames = options.get(VALUE_NAMES);
                // type=hash must need fieldTemplate
                if ("hash".equalsIgnoreCase(keyType)) {
                    String fieldTemplate = options.get(FIELD_TEMPLATE);
                    if (fieldTemplate.contains("${")) {
                        String[] split = fieldTemplate.split("\\$\\{");
                        fieldTemplate = "";
                        for (String s : split) {
                            if (s.contains("}")) {
                                String fieldName = s.substring(0, s.length() - 1);
                                int index = fields.get(fieldName);
                                fieldTemplate = fieldTemplate + data.getField(index).toString();
                            } else {
                                fieldTemplate = fieldTemplate + s;
                            }
                        }
                    }
                    
                    //fieldName = fieldTemplate-valueName
                    if (valueNames.contains(",")) {
                        HashMap<String, String> map = new HashMap<>();
                        String[] fieldNames = valueNames.split(",");
                        for (String fieldName : fieldNames) {
                            String value = data.getField(fields.get(fieldName)).toString();
                            map.put(fieldTemplate + "_" + fieldName, value);
                        }
                        jedisCluster.hset(keyTemplate, map);
                    } else {
                        jedisCluster.hset(keyTemplate, fieldTemplate + "_" + valueNames, data.getField(fields.get(valueNames)).toString());
                    }
                    
                } else if ("set".equalsIgnoreCase(keyType)) {
                    jedisCluster.set(keyTemplate, data.getField(fields.get(valueNames)).toString());
                    
                } else if ("sadd".equalsIgnoreCase(keyType)) {
                    jedisCluster.sadd(keyTemplate, data.getField(fields.get(valueNames)).toString());
                } else if ("zadd".equalsIgnoreCase(keyType)) {
                    jedisCluster.sadd(keyTemplate, data.getField(fields.get(valueNames)).toString());
                } else {
                    throw new IllegalArgumentException(" not find this keyType:" + keyType);
                }
                
                if (Objects.nonNull(options.get(EXPIRE_TIME))) {
                    jedisCluster.expire(keyTemplate, options.get(EXPIRE_TIME));
                }
            }
        }
    }
}

4.使用 Redis Sink

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.typeutils.TupleTypeInfo;
import org.apache.flink.api.scala.typeutils.Types;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import java.time.Duration;

/**
 * @author shengjk1
 * @date 2020/9/25
 */
public class SqlKafka {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        
        EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, environmentSettings);
        // enable checkpointing
        Configuration configuration = tableEnv.getConfig().getConfiguration();
        configuration.set(
                ExecutionCheckpointingOptions.CHECKPOINTING_MODE, CheckpointingMode.EXACTLY_ONCE);
        configuration.set(
                ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, Duration.ofSeconds(10));
        
        String sql = "CREATE TABLE sourcedata (`id` bigint,`status` int,`city_id` bigint,`courier_id` bigint,info_index int,order_id bigint,tableName String" +
                ") WITH (" +
                "'connector' = 'kafka','topic' = 'xxx'," +
                "'properties.bootstrap.servers' = 'xxx','properties.group.id' = 'testGroup'," +
                "'format' = 'json','scan.startup.mode' = 'earliest-offset')";
        tableEnv.executeSql(sql);
        
        //15017284 distinct
        Table bigtable = tableEnv.sqlQuery("select distinct a.id,a.courier_id,a.status,a.city_id,b.info_index from (select id,status,city_id,courier_id from sourcedata where tableName = 'orders' and status=60)a join (select " +
                " order_id,max(info_index)info_index from sourcedata  where tableName = 'infos'  group by order_id )b on a.id=b.order_id");

        sql = "CREATE TABLE redis (info_index BIGINT,courier_id BIGINT,city_id BIGINT" +
                ") WITH (" +
                "'connector' = 'redis'," +
                "'hostPort'='xxx'," +
                "'keyType'='hash'," +
                "'keyTemplate'='test2_${city_id}'," +
                "'fieldTemplate'='test2_${courier_id}'," +
                "'valueNames'='info_index,city_id'," +
                "'expireTime'='1000')";
            
        tableEnv.executeSql(sql);
        
        Table resultTable = tableEnv.sqlQuery("select sum(info_index)info_index,courier_id,city_id from " + bigtable + " group by city_id,courier_id");
        TupleTypeInfo<Tuple3<Long, Long, Long>> tupleType = new TupleTypeInfo<>(
                Types.LONG(),
                Types.LONG(),
                Types.LONG());
        tableEnv.toRetractStream(resultTable, tupleType).print("===== ");
        tableEnv.executeSql("INSERT INTO redis SELECT info_index,courier_id,city_id FROM " + resultTable);
        env.execute("");
    }
}

5.详细解释

create table test(
`id` bigint,
 `url` string,
 `day` string,
  `pv` long,
  `uv` long
) with {
    'connector'='redis',
    'hostPort'='xxx',
    'password'='',
    'expireTime'='100',
    'keyType'='hash',
    'keyTemplate'='test_${id}',
    'fieldTemplate'='${day}',
    'valueNames'='pv,uv',
}

redis result: 假设 id=1 day=20201016 pv=20,uv=20
    hash
    test_1 20201016-pv 20,20201016-uv 20

参数解释:
connector  固定写法
hostPort   redis 的地址
password   redis 的密码
expireTime  redis key 过期时间,单位为 s
keyType  redis key 的类型,目前有 hash、set、sadd、zadd
keyTemplate  redis key 的表达式,如 test_${id} 注意 id 为表的字段名
fieldTemplate  redis keyType==hash 时,此选项为必选,表达式规则同 keyTemplate
valueNames  redis value  only 可以有多个

6.原理

【Flink】Flink 自定义 redis sink_第1张图片

整个流程如图,CatalogTable —> DynamicTableSource and DynamicTableSink 这个过程中,其实是通过 DynamicTableSourceFactory and DynamicTableSinkFactory 起到了一个桥梁的作用

(Source/Sink)Factory 通过 connector=‘xxx’ 找到,理论上会做三种操作

  1. validate options
  2. configure encoding/decoding formats( if required )
  3. create a parameterized instance of the table connector
    其中 formats 是通过 format=‘xxx’ 找到

DynamicTableSource DynamicTableSink
官网虽说可以看做是有状态的,但是否真的有状态取决于具体实现的 source 和 sink

生成 Runtime logic,Runtime logic 被 Flink core connector interfaces( 如 InputFormat or SourceFunction),如果是 kafka 的话 则 是 FlinkKafkaConsumer 实现,而这些实现又被抽象为 *Provider,然后开始执行 *Provider

*Provider 是连接 SQL 与 Streaming 代码级别的桥梁

7.参考
https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/sourceSinks.html

作者:学木
链接:https://www.jianshu.com/p/09ed7e71aa1f
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

你可能感兴趣的:(大数据-flink,flink,redis,自定义,sink)