- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- 计算机视觉:COCO数据集
00&00
计算机视觉深度学习人工智能计算机视觉人工智能
COCO(CommonObjectsinContext)是一个广泛使用的计算机视觉数据集,主要用于图像识别、物体检测、分割和关键点检测等任务。以下是对COCO数据集的详细介绍,包括其特点、组成部分以及在计算机视觉中的应用。一、COCO数据集的特点1.规模庞大COCO数据集包含超过30万张图像,其中超过20万张图像有注释。这些图像来自不同的场景和对象,使得数据集具有广泛的代表性。2.丰富的标注信息物
- AI:236-基于RCS-OSA的YOLOv8改进 | 增强空间对象注意力实现小物体检测精度提升
一键难忘
精通AI实战千例专栏合集人工智能YOLO目标跟踪RCS-OSA
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~文章目录1.通过RCS-OSA替换C2f实现暴力涨点2.理论
- 基于深度学习YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython人工智能目标跟踪计算机视觉开发语言
一、前言随着人工智能技术的快速发展,计算机视觉(ComputerVision)已广泛应用于各种实际场景中,特别是在安全、金融、医疗等领域。人脸识别作为计算机视觉的一个重要应用,已经成为很多身份验证、安防监控、智能门禁等系统的核心技术。近年来,随着深度学习的突破,YOLO(YouOnlyLookOnce)系列算法因其高效、准确、实时的特点,广泛应用于物体检测任务。在实际的人脸识别应用中,活体人脸检测
- Python知识点:基于Python技术,如何使用YOLO进行实时物体检测
超哥同学
Python系列pythonYOLO开发语言面试编程
开篇,先说一个好消息,截止到2025年1月1日前,翻到文末找到我,赠送定制版的开题报告和任务书,先到先得!过期不候!使用YOLO进行实时物体检测的Python技术详解实时物体检测是计算机视觉中的一个关键任务,它要求算法能够快速且准确地识别和定位图像或视频流中的物体。YOLO(YouOnlyLookOnce)算法因其速度快、性能高而受到广泛关注。在本文中,我们将详细介绍如何使用Python和YOLO
- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 定了,2025年数据库运维就这样干
我科绝伦(Huanhuan Zhou)
mysqloracle数据库运维oracle
在数字化浪潮中,数据库作为企业数据资产的核心载体,其稳定运行与高效管理至关重要。新的一年,为应对日益增长的数据量和业务复杂度,我们为数据库运维制定了一系列全面且细致的计划,旨在提升数据库性能、保障数据安全,为企业业务发展筑牢坚实基础。一、强化巡检,防患未然数据库的稳定运行离不开日常的精心呵护。2025年,我们将进一步加强巡检工作,利用专业工具和自主研发的系统,对数据库进行全面“体检”。不仅关注数据
- 【FAQ】HarmonyOS SDK 闭源开放能力 — IAP Kit(4)
harmonyos-next
1.问题描述:发布了一个订阅,看日志显示订阅发布成功了,但是在消费的时候没有值,这个是什么原因?人脸活体检测返回上一页App由沉浸式变为非沉浸式多了上下安全区域。解决方案:对于公共事件来说就是提供这个能力,需要调用方保证时序,订阅成功之后再发广播才能收到。2.问题描述:微信支付,支付宝支付,银联支付SDK是否已经支持?解决方案:1、支付宝:鸿蒙支付SDK获取链接:https://opendocs.
- 基于深度学习的半导体检测与预测算法研究(二)
埃菲尔铁塔_CV算法
深度学习人工智能神经网络opencv计算机视觉python
摘要随着半导体行业的飞速发展,对生产过程中的检测和性能预测提出了更高要求。深度学习凭借其强大的数据处理和特征提取能力,在半导体领域展现出巨大的应用潜力。本文详细探讨了深度学习在半导体缺陷检测、工艺参数预测等方面的应用原理和方法,介绍了常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体在半导体数据处理中的应用,分析了模型训练与优化的关键技术,并通过实际案例验证了深度学习算法在
- 使用yolo11x进行物体分类
欣然~
分类人工智能深度学习
利用yolo11x进行物体识别一、物品分类代码说明模型加载:加载yolo11x.pt模型,如果这个模型在物体分类上表现不佳,可以考虑使用像yolov8n.pt这类通用的预训练模型。摄像头设置:打开电脑摄像头并将帧率设置为10fps,以此减轻处理负担。FPS计算:借助time库计算每帧的处理时间,进而得到FPS值,并在画面左上角显示。物体检测与分类:运用model(frame,conf=0.5,ve
- 轻量化网络模型调研报告
云雨、
网络人工智能深度学习
一、轻量化网络的为何诞生 深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。随着时代发展,人们更加关注深度神经网络的实际应用性能,人工智能技术的一个趋势是在边缘端平台上部署高性能的神经网络模型,并能在真实场景中实时(>30帧)运行,如移动端/嵌入式设备,这些平台的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些平台进行
- 深度学习的一些方向
xinpao
深度学习人工智能
深度学习的一些方向目录深度学习的一些方向一、多模态1.特征提取(featureextraction)2.文本转图像3.可视化问题回答二、计算机视觉1.深度估计(depthestimation)2.图像分类(imageclassification)3.图片分割(ImageSegmentation)4.图像转图像(imagetoimage)5.物体检测(objectdetection)6.视频分类(V
- 6个最佳实体检测API,可准确返回实体的名称
程序员后端
命名实体识别(NamedEntityRecognition)也称作实体检测(EntityDetection),是NLP技术手册中的一个重要工具。在高级深度学习和机器学习模型的支持下,命名实体识别技术正被产品经理用来创建人工智能支持的工具,并将其应用到各行各业的智能平台中。在本文中,我们将介绍命名实体识别技术的具体内容、工作原理、一些热门用例以及执行实体检测的最佳API。什么是命名实体识别或实体检测
- 基于YOLOv11的目标检测系统
夜思、晨
YOLO目标检测人工智能
基于YOLOv11的目标检测系统前言YOLO11是UltralyticsYOLO是实时物体检测器系列中的最新产品,以最先进的精度、速度和效率重新定义了可能实现的目标。在之前YOLO版本令人印象深刻的进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为广泛的计算机视觉任务的多功能选择。YOLOv11在COCO数据集的表现如下图:一、软件简介这款软件是一种基于最新YOLOv11算法的目标
- 项目十二:智能门禁系统
相醉为友
单片机作业windows
所需功能:硬件设置:使用51单片机连接人体红外传感器、液晶显示器(LCD)、蜂鸣器和电磁锁。人体检测:实时监测门口的人体活动。LCD显示:在LCD上显示门禁状态和欢迎词。门禁控制:通过蜂鸣器和电磁锁实现门禁控制。实现步骤:初始化设备:连接51单片机、人体红外传感器、LCD、蜂鸣器和电磁锁。设置传感器和执行器的驱动和接口。2.人体检测和数据处理:if((mode==0)&&(Series==1)){
- 《DNK210使用指南 -CanMV版 V1.0》第四十一章 YOLO2物体检测实验
硬件嵌入式程序员人工智能开源
第四十一章YOLO2物体检测实验1)实验平台:正点原子DNK210开发板2)章节摘自【正点原子】DNK210使用指南-CanMV版V1.03)购买链接:https://detail.tmall.com/item.htm?&id=7828013987504)全套实验源码+手册+视频下载地址:http://www.openedv.com/docs/boards/k210/ATK-DNK210.html
- 基于 FPGA 的 CNN 卷积神经网络整体实现
鱼弦
人工智能时代fpga开发cnn人工智能
基于FPGA的CNN卷积神经网络整体实现介绍卷积神经网络(CNN)是一种强大的深度学习架构,广泛用于图像识别、物体检测和自然语言处理等领域。FPGA以其并行处理能力、低延迟和灵活性,是加速CNN推理的理想硬件平台。通过在FPGA上实现CNN,可以显著提高实时应用中的推理效率。应用使用场景实时图像识别:如智能手机摄像头中的面部识别。自动驾驶:环境感知和障碍物检测。医疗影像分析:快速处理MRI或X-R
- 计算机视觉领域的轻量化模型——GhostNet 模型
DuHz
边缘计算轻量化模型计算机视觉人工智能算法深度学习神经网络边缘计算网络
GhostNet模型详解GhostNet是一个高效的轻量化卷积神经网络模型,专为资源受限的设备(如移动设备和嵌入式系统)设计。它的核心创新是Ghost模块,该模块通过生成更多的特征图来减少计算资源消耗。GhostNet适用于实时计算任务,如图像分类和物体检测,同时在保持较高准确率的基础上,优化了计算效率。目录GhostNet背景Ghost模块概述GhostNet网络架构Ghost模块的数学原理Gh
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- python运动物体检测_安全检查中...
weixin_39976748
python运动物体检测
+((!+[]+(!![])+!![]+!![]+!![]+!![]+!![]+!![]+[])+(!+[]+(!![])+!![])+(!+[]+(!![])+!![]+!![]+!![]+!![]+!![]+!![])+(!+[]-(!![]))+(!+[]+(!![])+!![]+!![])+(+!![])+(!+[]+(!![])+!![]+!![]+!![]+!![])+(!+[]+(!
- Python-OpenCV实现运动物体检测
HackDyno
pythonopencv开发语言Python
Python-OpenCV实现运动物体检测运动物体检测是计算机视觉领域中的一个重要任务,它可以帮助我们识别并跟踪视频中的运动物体。本文将介绍如何使用Python和OpenCV库实现基于帧差法的运动物体检测。导入库首先,我们需要导入所需的库:OpenCV和NumPy。importcv2importnumpyasnp读取视频我们将从视频文件中读取帧数据。可以使用cv2.VideoCapture函数打开
- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 【趣学SQL】第八章:SQL 实战案例 8.2 SQL 性能监控与调优——给数据库装上“心电图仪“的硬核指南
精通代码大仙
数据库数据库sql
第八章:SQL最佳实践8.2SQL性能监控与调优——给数据库装上"心电图仪"的硬核指南欢迎来到「数据库急诊监护室」!今天我们将化身"SQL性能侦探",用一家日活百万的虚拟吃瓜论坛"瓜田社"的崩库案例,教你如何用监控工具抓住"性能杀手",让数据库从"垂死挣扎"变"生龙活虎"。8.2.1常见的监控工具——数据库的"健康手环"全家桶工具1:Prometheus+Grafana(豪华体检套餐)#prome
- 《极速优化工具,全面保护您的电脑系统》
風落
软件需求软件工程电脑
球领先的系统优化工具,为您提供全面的电脑维护解决方案。这款软件集成了电脑体检、系统清理、系统优化、隐私保护和系统监视等多功能,旨在精简系统、管理启动项、优化及清理注册表,同时清理个人隐私数据,确保您的个人信息安全。核心功能概览:注册表与磁盘清理:高效清除无效注册表项和冗余文件,释放宝贵的磁盘空间。隐私保护:严密维护您的个人隐私记录,防止未授权程序篡改注册表,保障您的隐私安全。系统优化:深度优化系统
- Python基于YOLOv8和OpenCV实现车道线和车辆检测
old_power
计算机视觉YOLOopencv计算机视觉python
使用YOLOv8(YouOnlyLookOnce)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。1、系统主要功能车道检测:使用边缘检测和霍夫线变换检测道路车道。汽车检测:使用YOLOv8模型识别汽车并在汽车周围绘制边界框。距离估计:使用边界框大小计算检测到的汽车与摄像头的距离。2、环境
- Q1营收稳健增长,云从科技如何在“百模大战”的险中求稳?
huaxinjiayou
java
找实习伙伴有没有51后入职或者已经在职的在北京字节实习的牛友啊,找个搭子[牛泪][牛泪]神仙外企英伟达值得一试优点是提供了丰厚的薪资待遇和福利保障,月薪20k-70k,而且员工可以享受到补充商业保险、年度体检、题解|#自动售卖机#`timescale1ns/1nsmodulesale(input题解|#进制转换##includeusingnamespacestd;i求职经历分享本人双非本,24届,
- 119:虚惊一场
追梦的小蚂蚁
医院体检结果出来了。老a被通知再次去复查,又复查了一遍,结果还是不理想。老a心里有点不痛快了,难不成饭吃到头了?这人生最悲剧的事情就是人没了,钱还没花完。我从明天开始想吃的想喝的一毛都不省,天天抽华子。上班期间,老a掏出华子给人散。老c:“这发什么横财了?都整上了华子了?”老a:“别tm废话,抽不?不抽我装上了!”老c:“哥哥,肯定抽啊,拿来。”老a:“就凭这个哥哥,以后给你天天发华子!”老c:“
- #开始记日记#1235 胃口不好吃饺子
董克平日记
2020/06/24星期三北京吃个醋拌茄子消暑珠珠送了一个父亲节礼物,要我陪她一起去体检。这些年身上多了许多毛病,血压、血脂、血糖都需要吃药维持了,上一次体检知道血糖已经到了临界点,可是也没有予以重视,继续大吃大喝少锻炼,结果可想而知,现在是每一餐都离不开二甲双胍了。不过我还是不愿意去体检,总觉得体检没什么用,身体有毛病就去看医生,体检又不治病。我对体检的看法是“小病不用治,大病治不了”,通过体检
- Cut, Paste and Learn方法解读
wangxinwei2000
深度学习人工智能
Abstract问题背景:标注数据的缺乏:在实例检测任务中,部署物体检测模型的一个主要障碍是缺乏大量标注数据。例如,在一个特定的厨房环境中找到包含实例的大型标注数据集是不太可能的。每当面对新的环境和新的物体实例时,都需要进行昂贵的数据收集和标注工作。研究贡献:解决方法:本文提出了一种简单的方法,可以以最小的努力生成大量标注的实例数据集。关键洞察:研究者的关键洞察是,仅仅确保“局部真实感”(patc
- 淋巴结肿大会导致癌症吗?引起淋巴结肿大的原因,早知道早预防
20a6fc3e70ac
作为医生,在接诊过程中我经常会碰见这样的患者,体检中发现淋巴结肿大或者是感冒发热,在消炎治疗的过程中突然发现颈部两侧淋巴结肿大,以至于会变得越来越大。淋巴结是人体重要的免疫器官之一,但是淋巴结肿大是一种非常常见的疾病,淋巴结的肿大分为局部淋巴结肿大和全身淋巴结肿大,意义各不一样,一般局部淋巴结肿大都代表局部有炎症或者非特异性淋巴结炎,以及有癌转移等疾病。如果是两个区域以上淋巴结肿大就称为全身淋巴结
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要