Redis 提供了丰富的数据类型,常见的有五种:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)。
随着 Redis 版本的更新,后面又支持了四种数据类型: BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)。
每种数据对象都各自的应用场景,你能说出它们各自的应用场景吗?
面试过程中,这个问题也很常被问到,又比如会举例一个应用场景来问你,让你说使用哪种 Redis 数据类型来实现。
所以,这次我们就来学习 Redis 数据类型的使用以及应用场景。
PS:你可以自己本机安装 Redis 或者通过 Redis 官网提供的在线 Redis 环境(opens new window)来敲命令。
String 是最基本的 key-value 结构,key 是唯一标识,value 是具体的值,value其实不仅是字符串, 也可以是数字(整数或浮点数),value 最多可以容纳的数据长度是 512M。
String 类型的底层的数据结构实现主要是 int 和 SDS(简单动态字符串)。
SDS 和我们认识的 C 字符串不太一样,之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:
字符串对象的内部编码(encoding)有 3 种 :int、raw和 embstr。
如果一个字符串对象保存的是整数值,并且这个整数值可以用long类型来表示,那么字符串对象会将整数值保存在字符串对象结构的ptr属性里面(将void*转换成 long),并将字符串对象的编码设置为int。
如果字符串对象保存的是一个字符串,并且这个字符申的长度小于等于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为embstr, embstr编码是专门用于保存短字符串的一种优化编码方式:
如果字符串对象保存的是一个字符串,并且这个字符串的长度大于 32 字节(redis 2.+版本),那么字符串对象将使用一个简单动态字符串(SDS)来保存这个字符串,并将对象的编码设置为raw:
注意,embstr 编码和 raw 编码的边界在 redis 不同版本中是不一样的:
可以看到embstr和raw编码都会使用SDS来保存值,但不同之处在于embstr会通过一次内存分配函数来分配一块连续的内存空间来保存redisObject和SDS,而raw编码会通过调用两次内存分配函数来分别分配两块空间来保存redisObject和SDS。Redis这样做会有很多好处:
但是 embstr 也有缺点的:
使用 String 来缓存对象有两种方式:
因为 Redis 处理命令是单线程,所以执行命令的过程是原子的。因此 String 数据类型适合计数场景,比如计算访问次数、点赞、转发、库存数量等等。
比如计算文章的阅读量:
# 初始化文章的阅读量
> SET aritcle:readcount:1001 0
OK
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 1
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 2
#阅读量+1
> INCR aritcle:readcount:1001
(integer) 3
# 获取对应文章的阅读量
> GET aritcle:readcount:1001
"3"
SET 命令有个 NX 参数可以实现「key不存在才插入」,可以用它来实现分布式锁:
一般而言,还会对分布式锁加上过期时间,分布式锁的命令如下:
SET lock_key unique_value NX PX 10000
而解锁的过程就是将 lock_key 键删除,但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。
可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。
// 释放锁时,先比较 unique_value 是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
return redis.call("del",KEYS[1])
else
return 0
end
这样一来,就通过使用 SET 命令和 Lua 脚本在 Redis 单节点上完成了分布式锁的加锁和解锁。
通常我们在开发后台管理系统时,会使用 Session 来保存用户的会话(登录)状态,这些 Session 信息会被保存在服务器端,但这只适用于单系统应用,如果是分布式系统此模式将不再适用。
例如用户一的 Session 信息被存储在服务器一,但第二次访问时用户一被分配到服务器二,这个时候服务器并没有用户一的 Session 信息,就会出现需要重复登录的问题,问题在于分布式系统每次会把请求随机分配到不同的服务器。
分布式系统单独存储 Session 流程图:
因此,我们需要借助 Redis 对这些 Session 信息进行统一的存储和管理,这样无论请求发送到那台服务器,服务器都会去同一个 Redis 获取相关的 Session 信息,这样就解决了分布式系统下 Session 存储的问题。
分布式系统使用同一个 Redis 存储 Session 流程图:
List 列表是简单的字符串列表,按照插入顺序排序,可以从头部或尾部向 List 列表添加元素。
列表的最大长度为 2^32 - 1,也即每个列表支持超过 40 亿个元素。内部实现
List 类型的底层数据结构是由双向链表或压缩列表实现的:
但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表。
# 将一个或多个值value插入到key列表的表头(最左边),最后的值在最前面
LPUSH key value [value ...]
# 将一个或多个值value插入到key列表的表尾(最右边)
RPUSH key value [value ...]
# 移除并返回key列表的头元素
LPOP key
# 移除并返回key列表的尾元素
RPOP key
# 返回列表key中指定区间内的元素,区间以偏移量start和stop指定,从0开始
LRANGE key start stop
# 从key列表表头弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BLPOP key [key ...] timeout
# 从key列表表尾弹出一个元素,没有就阻塞timeout秒,如果timeout=0则一直阻塞
BRPOP key [key ...] timeout
消息队列在存取消息时,必须要满足三个需求,分别是消息保序、处理重复的消息和保证消息可靠性。
Redis 的 List 和 Stream 两种数据类型,就可以满足消息队列的这三个需求。我们先来了解下基于 List 的消息队列实现方法,后面在介绍 Stream 数据类型时候,在详细说说 Stream。
1、如何满足消息保序需求?
List 本身就是按先进先出的顺序对数据进行存取的,所以,如果使用 List 作为消息队列保存消息的话,就已经能满足消息保序的需求了。
List 可以使用 LPUSH + RPOP (或者反过来,RPUSH+LPOP)命令实现消息队列。
不过,在消费者读取数据时,有一个潜在的性能风险点。
在生产者往 List 中写入数据时,List 并不会主动地通知消费者有新消息写入,如果消费者想要及时处理消息,就需要在程序中不停地调用 RPOP 命令(比如使用一个while(1)循环)。如果有新消息写入,RPOP命令就会返回结果,否则,RPOP命令返回空值,再继续循环。
所以,即使没有新消息写入List,消费者也要不停地调用 RPOP 命令,这就会导致消费者程序的 CPU 一直消耗在执行 RPOP 命令上,带来不必要的性能损失。
为了解决这个问题,Redis提供了 BRPOP 命令。BRPOP命令也称为阻塞式读取,客户端在没有读到队列数据时,自动阻塞,直到有新的数据写入队列,再开始读取新数据。和消费者程序自己不停地调用RPOP命令相比,这种方式能节省CPU开销。
2、如何处理重复的消息?
消费者要实现重复消息的判断,需要 2 个方面的要求:
但是 List 并不会为每个消息生成 ID 号,所以我们需要自行为每个消息生成一个全局唯一ID,生成之后,我们在用 LPUSH 命令把消息插入 List 时,需要在消息中包含这个全局唯一 ID。
例如,我们执行以下命令,就把一条全局 ID 为 111000102、库存量为 99 的消息插入了消息队列:
> LPUSH mq "111000102:stock:99"
(integer) 1
3、如何保证消息可靠性?
当消费者程序从 List 中读取一条消息后,List 就不会再留存这条消息了。所以,如果消费者程序在处理消息的过程出现了故障或宕机,就会导致消息没有处理完成,那么,消费者程序再次启动后,就没法再次从 List 中读取消息了。
为了留存消息,List 类型提供了 BRPOPLPUSH 命令,这个命令的作用是让消费者程序从一个 List 中读取消息,同时,Redis 会把这个消息再插入到另一个 List(可以叫作备份 List)留存。
这样一来,如果消费者程序读了消息但没能正常处理,等它重启后,就可以从备份 List 中重新读取消息并进行处理了。
好了,到这里可以知道基于 List 类型的消息队列,满足消息队列的三大需求(消息保序、处理重复的消息和保证消息可靠性)。
List 作为消息队列有什么缺陷?
List 不支持多个消费者消费同一条消息,因为一旦消费者拉取一条消息后,这条消息就从 List 中删除了,无法被其它消费者再次消费。
要实现一条消息可以被多个消费者消费,那么就要将多个消费者组成一个消费组,使得多个消费者可以消费同一条消息,但是 List 类型并不支持消费组的实现。
这就要说起 Redis 从 5.0 版本开始提供的 Stream 数据类型了,Stream 同样能够满足消息队列的三大需求,而且它还支持「消费组」形式的消息读取。
Hash 是一个键值对(key - value)集合,其中 value 的形式如: value=[{field1,value1},...{fieldN,valueN}]。Hash 特别适合用于存储对象。
Hash 与 String 对象的区别如下图所示:
Hash 类型的底层数据结构是由压缩列表或哈希表实现的:
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
# 存储一个哈希表key的键值
HSET key field value
# 获取哈希表key对应的field键值
HGET key field
# 在一个哈希表key中存储多个键值对
HMSET key field value [field value...]
# 批量获取哈希表key中多个field键值
HMGET key field [field ...]
# 删除哈希表key中的field键值
HDEL key field [field ...]
# 返回哈希表key中field的数量
HLEN key
# 返回哈希表key中所有的键值
HGETALL key
# 为哈希表key中field键的值加上增量n
HINCRBY key field n
Hash 类型的 (key,field, value) 的结构与对象的(对象id, 属性, 值)的结构相似,也可以用来存储对象。
我们以用户信息为例,它在关系型数据库中的结构是这样的:
我们可以使用如下命令,将用户对象的信息存储到 Hash 类型:
# 存储一个哈希表uid:1的键值
> HMSET uid:1 name Tom age 15
2
# 存储一个哈希表uid:2的键值
> HMSET uid:2 name Jerry age 13
2
# 获取哈希表用户id为1中所有的键值
> HGETALL uid:1
1) "name"
2) "Tom"
3) "age"
4) "15"
Redis Hash 存储其结构如下图:
在介绍 String 类型的应用场景时有所介绍,String + Json也是存储对象的一种方式,那么存储对象时,到底用 String + json 还是用 Hash 呢?
一般对象用 String + Json 存储,对象中某些频繁变化的属性可以考虑抽出来用 Hash 类型存储。
以用户 id 为 key,商品 id 为 field,商品数量为 value,恰好构成了购物车的3个要素,如下图所示。
涉及的命令如下:
当前仅仅是将商品ID存储到了Redis 中,在回显商品具体信息的时候,还需要拿着商品 id 查询一次数据库,获取完整的商品的信息。
Set 类型是一个无序并唯一的键值集合,它的存储顺序不会按照插入的先后顺序进行存储。
一个集合最多可以存储 2^32-1 个元素。概念和数学中个的集合基本类似,可以交集,并集,差集等等,所以 Set 类型除了支持集合内的增删改查,同时还支持多个集合取交集、并集、差集。
Set 类型和 List 类型的区别如下:
Set 类型的底层数据结构是由哈希表或整数集合实现的:
Set常用操作:
# 往集合key中存入元素,元素存在则忽略,若key不存在则新建
SADD key member [member ...]
# 从集合key中删除元素
SREM key member [member ...]
# 获取集合key中所有元素
SMEMBERS key
# 获取集合key中的元素个数
SCARD key
# 判断member元素是否存在于集合key中
SISMEMBER key member
# 从集合key中随机选出count个元素,元素不从key中删除
SRANDMEMBER key [count]
# 从集合key中随机选出count个元素,元素从key中删除
SPOP key [count]
Set运算操作:
# 交集运算
SINTER key [key ...]
# 将交集结果存入新集合destination中
SINTERSTORE destination key [key ...]
# 并集运算
SUNION key [key ...]
# 将并集结果存入新集合destination中
SUNIONSTORE destination key [key ...]
# 差集运算
SDIFF key [key ...]
# 将差集结果存入新集合destination中
SDIFFSTORE destination key [key ...]
集合的主要几个特性,无序、不可重复、支持并交差等操作。
因此 Set 类型比较适合用来数据去重和保障数据的唯一性,还可以用来统计多个集合的交集、错集和并集等,当我们存储的数据是无序并且需要去重的情况下,比较适合使用集合类型进行存储。
但是要提醒你一下,这里有一个潜在的风险。Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞。
在主从集群中,为了避免主库因为 Set 做聚合计算(交集、差集、并集)时导致主库被阻塞,我们可以选择一个从库完成聚合统计,或者把数据返回给客户端,由客户端来完成聚合统计。
Set 类型可以保证一个用户只能点一个赞,这里举例子一个场景,key 是文章id,value 是用户id。
uid:1 、uid:2、uid:3 三个用户分别对 article:1 文章点赞了。
# uid:1 用户对文章 article:1 点赞
> SADD article:1 uid:1
(integer) 1
# uid:2 用户对文章 article:1 点赞
> SADD article:1 uid:2
(integer) 1
# uid:3 用户对文章 article:1 点赞
> SADD article:1 uid:3
(integer) 1
uid:1 取消了对 article:1 文章点赞。
> SREM article:1 uid:1
(integer) 1
获取 article:1 文章所有点赞用户 :
> SMEMBERS article:1
1) "uid:3"
2) "uid:2"
获取 article:1 文章的点赞用户数量:
> SCARD article:1
(integer) 2
判断用户 uid:1 是否对文章 article:1 点赞了:
> SISMEMBER article:1 uid:1
(integer) 0 # 返回0说明没点赞,返回1则说明点赞了
Set 类型支持交集运算,所以可以用来计算共同关注的好友、公众号等。
key 可以是用户id,value 则是已关注的公众号的id。
uid:1 用户关注公众号 id 为 5、6、7、8、9,uid:2 用户关注公众号 id 为 7、8、9、10、11。
# uid:1 用户关注公众号 id 为 5、6、7、8、9
> SADD uid:1 5 6 7 8 9
(integer) 5
# uid:2 用户关注公众号 id 为 7、8、9、10、11
> SADD uid:2 7 8 9 10 11
(integer) 5
uid:1 和 uid:2 共同关注的公众号:
# 获取共同关注
> SINTER uid:1 uid:2
1) "7"
2) "8"
3) "9"
给 uid:2 推荐 uid:1 关注的公众号:
> SDIFF uid:1 uid:2
1) "5"
2) "6"
验证某个公众号是否同时被 uid:1 或 uid:2 关注:
> SISMEMBER uid:1 5
(integer) 1 # 返回0,说明关注了
> SISMEMBER uid:2 5
(integer) 0 # 返回0,说明没关注
存储某活动中中奖的用户名 ,Set 类型因为有去重功能,可以保证同一个用户不会中奖两次。
key为抽奖活动名,value为员工名称,把所有员工名称放入抽奖箱 :
>SADD lucky Tom Jerry John Sean Marry Lindy Sary Mark
(integer) 5
如果允许重复中奖,可以使用 SRANDMEMBER 命令。
# 抽取 1 个一等奖:
> SRANDMEMBER lucky 1
1) "Tom"
# 抽取 2 个二等奖:
> SRANDMEMBER lucky 2
1) "Mark"
2) "Jerry"
# 抽取 3 个三等奖:
> SRANDMEMBER lucky 3
1) "Sary"
2) "Tom"
3) "Jerry"
如果不允许重复中奖,可以使用 SPOP 命令。
# 抽取一等奖1个
> SPOP lucky 1
1) "Sary"
# 抽取二等奖2个
> SPOP lucky 2
1) "Jerry"
2) "Mark"
# 抽取三等奖3个
> SPOP lucky 3
1) "John"
2) "Sean"
3) "Lindy"
Zset 类型(有序集合类型)相比于 Set 类型多了一个排序属性 score(分值),对于有序集合 ZSet 来说,每个存储元素相当于有两个值组成的,一个是有序集合的元素值,一个是排序值。
有序集合保留了集合不能有重复成员的特性(分值可以重复),但不同的是,有序集合中的元素可以排序。
Zset 类型的底层数据结构是由压缩列表或跳表实现的:
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
Zset 常用操作:
# 往有序集合key中加入带分值元素
ZADD key score member [[score member]...]
# 往有序集合key中删除元素
ZREM key member [member...]
# 返回有序集合key中元素member的分值
ZSCORE key member
# 返回有序集合key中元素个数
ZCARD key
# 为有序集合key中元素member的分值加上increment
ZINCRBY key increment member
# 正序获取有序集合key从start下标到stop下标的元素
ZRANGE key start stop [WITHSCORES]
# 倒序获取有序集合key从start下标到stop下标的元素
ZREVRANGE key start stop [WITHSCORES]
# 返回有序集合中指定分数区间内的成员,分数由低到高排序。
ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]
# 返回指定成员区间内的成员,按字典正序排列, 分数必须相同。
ZRANGEBYLEX key min max [LIMIT offset count]
# 返回指定成员区间内的成员,按字典倒序排列, 分数必须相同
ZREVRANGEBYLEX key max min [LIMIT offset count]
Zset 运算操作(相比于 Set 类型,ZSet 类型没有支持差集运算):
# 并集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZUNIONSTORE destkey numberkeys key [key...]
# 交集计算(相同元素分值相加),numberkeys一共多少个key,WEIGHTS每个key对应的分值乘积
ZINTERSTORE destkey numberkeys key [key...]
Zset 类型(Sorted Set,有序集合) 可以根据元素的权重来排序,我们可以自己来决定每个元素的权重值。比如说,我们可以根据元素插入 Sorted Set 的时间确定权重值,先插入的元素权重小,后插入的元素权重大。
在面对需要展示最新列表、排行榜等场景时,如果数据更新频繁或者需要分页显示,可以优先考虑使用 Sorted Set。
有序集合比较典型的使用场景就是排行榜。例如学生成绩的排名榜、游戏积分排行榜、视频播放排名、电商系统中商品的销量排名等。
我们以博文点赞排名为例,小林发表了五篇博文,分别获得赞为 200、40、100、50、150。
# arcticle:1 文章获得了200个赞
> ZADD user:xiaolin:ranking 200 arcticle:1
(integer) 1
# arcticle:2 文章获得了40个赞
> ZADD user:xiaolin:ranking 40 arcticle:2
(integer) 1
# arcticle:3 文章获得了100个赞
> ZADD user:xiaolin:ranking 100 arcticle:3
(integer) 1
# arcticle:4 文章获得了50个赞
> ZADD user:xiaolin:ranking 50 arcticle:4
(integer) 1
# arcticle:5 文章获得了150个赞
> ZADD user:xiaolin:ranking 150 arcticle:5
(integer) 1
文章 arcticle:4 新增一个赞,可以使用 ZINCRBY 命令(为有序集合key中元素member的分值加上increment):
> ZINCRBY user:xiaolin:ranking 1 arcticle:4
"51"
查看某篇文章的赞数,可以使用 ZSCORE 命令(返回有序集合key中元素个数):
> ZSCORE user:xiaolin:ranking arcticle:4
"50"
获取小林文章赞数最多的 3 篇文章,可以使用 ZREVRANGE 命令(倒序获取有序集合 key 从start下标到stop下标的元素):
# WITHSCORES 表示把 score 也显示出来
> ZREVRANGE user:xiaolin:ranking 0 2 WITHSCORES
1) "arcticle:1"
2) "200"
3) "arcticle:5"
4) "150"
5) "arcticle:3"
6) "100"
获取小林 100 赞到 200 赞的文章,可以使用 ZRANGEBYSCORE 命令(返回有序集合中指定分数区间内的成员,分数由低到高排序):
> ZRANGEBYSCORE user:xiaolin:ranking 100 200 WITHSCORES
1) "arcticle:3"
2) "100"
3) "arcticle:5"
4) "150"
5) "arcticle:1"
6) "200"
使用有序集合的 ZRANGEBYLEX 或 ZREVRANGEBYLEX 可以帮助我们实现电话号码或姓名的排序,我们以 ZRANGEBYLEX (返回指定成员区间内的成员,按 key 正序排列,分数必须相同)为例。
注意:不要在分数不一致的 SortSet 集合中去使用 ZRANGEBYLEX和 ZREVRANGEBYLEX 指令,因为获取的结果会不准确。
1、电话排序
我们可以将电话号码存储到 SortSet 中,然后根据需要来获取号段:
> ZADD phone 0 13100111100 0 13110114300 0 13132110901
(integer) 3
> ZADD phone 0 13200111100 0 13210414300 0 13252110901
(integer) 3
> ZADD phone 0 13300111100 0 13310414300 0 13352110901
(integer) 3
获取所有号码:
> ZRANGEBYLEX phone - +
1) "13100111100"
2) "13110114300"
3) "13132110901"
4) "13200111100"
5) "13210414300"
6) "13252110901"
7) "13300111100"
8) "13310414300"
9) "13352110901"
获取 132 号段的号码:
> ZRANGEBYLEX phone [132 (133
1) "13200111100"
2) "13210414300"
3) "13252110901"
获取132、133号段的号码:
> ZRANGEBYLEX phone [132 (134
1) "13200111100"
2) "13210414300"
3) "13252110901"
4) "13300111100"
5) "13310414300"
6) "13352110901"
2、姓名排序
> zadd names 0 Toumas 0 Jake 0 Bluetuo 0 Gaodeng 0 Aimini 0 Aidehua
(integer) 6
获取所有人的名字:
> ZRANGEBYLEX names - +
1) "Aidehua"
2) "Aimini"
3) "Bluetuo"
4) "Gaodeng"
5) "Jake"
6) "Toumas"
获取名字中大写字母A开头的所有人:
> ZRANGEBYLEX names [A (B
1) "Aidehua"
2) "Aimini"
获取名字中大写字母 C 到 Z 的所有人:
> ZRANGEBYLEX names [C [Z
1) "Gaodeng"
2) "Jake"
3) "Toumas"
Bitmap,即位图,是一串连续的二进制数组(0和1),可以通过偏移量(offset)定位元素。BitMap通过最小的单位bit来进行0|1的设置,表示某个元素的值或者状态,时间复杂度为O(1)。
由于 bit 是计算机中最小的单位,使用它进行储存将非常节省空间,特别适合一些数据量大且使用二值统计的场景。
Bitmap 本身是用 String 类型作为底层数据结构实现的一种统计二值状态的数据类型。
String 类型是会保存为二进制的字节数组,所以,Redis 就把字节数组的每个 bit 位利用起来,用来表示一个元素的二值状态,你可以把 Bitmap 看作是一个 bit 数组。
bitmap 基本操作:
# 设置值,其中value只能是 0 和 1
SETBIT key offset value
# 获取值
GETBIT key offset
# 获取指定范围内值为 1 的个数
# start 和 end 以字节为单位
BITCOUNT key start end
bitmap 运算操作:
# BitMap间的运算
# operations 位移操作符,枚举值
AND 与运算 &
OR 或运算 |
XOR 异或 ^
NOT 取反 ~
# result 计算的结果,会存储在该key中
# key1 … keyn 参与运算的key,可以有多个,空格分割,not运算只能一个key
# 当 BITOP 处理不同长度的字符串时,较短的那个字符串所缺少的部分会被看作 0。返回值是保存到 destkey 的字符串的长度(以字节byte为单位),和输入 key 中最长的字符串长度相等。
BITOP [operations] [result] [key1] [keyn…]
# 返回指定key中第一次出现指定value(0/1)的位置
BITPOS [key] [value]
Bitmap 类型非常适合二值状态统计的场景,这里的二值状态就是指集合元素的取值就只有 0 和 1 两种,在记录海量数据时,Bitmap 能够有效地节省内存空间。
在签到打卡的场景中,我们只用记录签到(1)或未签到(0),所以它就是非常典型的二值状态。
签到统计时,每个用户一天的签到用 1 个 bit 位就能表示,一个月(假设是 31 天)的签到情况用 31 个 bit 位就可以,而一年的签到也只需要用 365 个 bit 位,根本不用太复杂的集合类型。
假设我们要统计 ID 100 的用户在 2022 年 6 月份的签到情况,就可以按照下面的步骤进行操作。
第一步,执行下面的命令,记录该用户 6 月 3 号已签到。
SETBIT uid:sign:100:202206 2 1
第二步,检查该用户 6 月 3 日是否签到。
GETBIT uid:sign:100:202206 2
第三步,统计该用户在 6 月份的签到次数。
BITCOUNT uid:sign:100:202206
这样,我们就知道该用户在 6 月份的签到情况了。
如何统计这个月首次打卡时间呢?
Redis 提供了 BITPOS key bitValue [start] [end]指令,返回数据表示 Bitmap 中第一个值为 bitValue 的 offset 位置。
在默认情况下, 命令将检测整个位图, 用户可以通过可选的 start 参数和 end 参数指定要检测的范围。所以我们可以通过执行这条命令来获取 userID = 100 在 2022 年 6 月份首次打卡日期:
BITPOS uid:sign:100:202206 1
需要注意的是,因为 offset 从 0 开始的,所以我们需要将返回的 value + 1 。
Bitmap 提供了 GETBIT、SETBIT 操作,通过一个偏移值 offset 对 bit 数组的 offset 位置的 bit 位进行读写操作,需要注意的是 offset 从 0 开始。
只需要一个 key = login_status 表示存储用户登陆状态集合数据, 将用户 ID 作为 offset,在线就设置为 1,下线设置 0。通过 GETBIT判断对应的用户是否在线。 5000 万用户只需要 6 MB 的空间。
假如我们要判断 ID = 10086 的用户的登陆情况:
第一步,执行以下指令,表示用户已登录。
SETBIT login_status 10086 1
第二步,检查该用户是否登陆,返回值 1 表示已登录。
GETBIT login_status 10086
第三步,登出,将 offset 对应的 value 设置成 0。
SETBIT login_status 10086 0
如何统计出这连续 7 天连续打卡用户总数呢?
我们把每天的日期作为 Bitmap 的 key,userId 作为 offset,若是打卡则将 offset 位置的 bit 设置成 1。
key 对应的集合的每个 bit 位的数据则是一个用户在该日期的打卡记录。
一共有 7 个这样的 Bitmap,如果我们能对这 7 个 Bitmap 的对应的 bit 位做 『与』运算。同样的 UserID offset 都是一样的,当一个 userID 在 7 个 Bitmap 对应对应的 offset 位置的 bit = 1 就说明该用户 7 天连续打卡。
结果保存到一个新 Bitmap 中,我们再通过 BITCOUNT 统计 bit = 1 的个数便得到了连续打卡 7 天的用户总数了。
Redis 提供了 BITOP operation destkey key [key ...]这个指令用于对一个或者多个 key 的 Bitmap 进行位元操作。
假设要统计 3 天连续打卡的用户数,则是将三个 bitmap 进行 AND 操作,并将结果保存到 destmap 中,接着对 destmap 执行 BITCOUNT 统计,如下命令:
# 与操作
BITOP AND destmap bitmap:01 bitmap:02 bitmap:03
# 统计 bit 位 = 1 的个数
BITCOUNT destmap
即使一天产生一个亿的数据,Bitmap 占用的内存也不大,大约占 12 MB 的内存(10^8/8/1024/1024),7 天的 Bitmap 的内存开销约为 84 MB。同时我们最好给 Bitmap 设置过期时间,让 Redis 删除过期的打卡数据,节省内存。
Redis HyperLogLog 是 Redis 2.8.9 版本新增的数据类型,是一种用于「统计基数」的数据集合类型,基数统计就是指统计一个集合中不重复的元素个数。但要注意,HyperLogLog 是统计规则是基于概率完成的,不是非常准确,标准误算率是 0.81%。
所以,简单来说 HyperLogLog 提供不精确的去重计数。
HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的内存空间总是固定的、并且是很小的。
在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
这什么概念?举个例子给大家对比一下。
用 Java 语言来说,一般 long 类型占用 8 字节,而 1 字节有 8 位,即:1 byte = 8 bit,即 long 数据类型最大可以表示的数是:2^63-1。对应上面的2^64个数,假设此时有2^63-1这么多个数,从 0 ~ 2^63-1,按照long以及1k = 1024 字节的规则来计算内存总数,就是:((2^63-1) * 8/1024)K,这是很庞大的一个数,存储空间远远超过12K,而 HyperLogLog 却可以用 12K 就能统计完。
HyperLogLog 的实现涉及到很多数学问题,太费脑子了,我也没有搞懂,如果你想了解一下,课下可以看看这个:HyperLogLog(opens new window)。
HyperLogLog 命令很少,就三个。
# 添加指定元素到 HyperLogLog 中
PFADD key element [element ...]
# 返回给定 HyperLogLog 的基数估算值。
PFCOUNT key [key ...]
# 将多个 HyperLogLog 合并为一个 HyperLogLog
PFMERGE destkey sourcekey [sourcekey ...]
Redis HyperLogLog 优势在于只需要花费 12 KB 内存,就可以计算接近 2^64 个元素的基数,和元素越多就越耗费内存的 Set 和 Hash 类型相比,HyperLogLog 就非常节省空间。
所以,非常适合统计百万级以上的网页 UV 的场景。
在统计 UV 时,你可以用 PFADD 命令(用于向 HyperLogLog 中添加新元素)把访问页面的每个用户都添加到 HyperLogLog 中。
PFADD page1:uv user1 user2 user3 user4 user5
接下来,就可以用 PFCOUNT 命令直接获得 page1 的 UV 值了,这个命令的作用就是返回 HyperLogLog 的统计结果。
PFCOUNT page1:uv
不过,有一点需要你注意一下,HyperLogLog 的统计规则是基于概率完成的,所以它给出的统计结果是有一定误差的,标准误算率是 0.81%。
这也就意味着,你使用 HyperLogLog 统计的 UV 是 100 万,但实际的 UV 可能是 101 万。虽然误差率不算大,但是,如果你需要精确统计结果的话,最好还是继续用 Set 或 Hash 类型。
Redis GEO 是 Redis 3.2 版本新增的数据类型,主要用于存储地理位置信息,并对存储的信息进行操作。
在日常生活中,我们越来越依赖搜索“附近的餐馆”、在打车软件上叫车,这些都离不开基于位置信息服务(Location-Based Service,LBS)的应用。LBS 应用访问的数据是和人或物关联的一组经纬度信息,而且要能查询相邻的经纬度范围,GEO 就非常适合应用在 LBS 服务的场景中。
GEO 本身并没有设计新的底层数据结构,而是直接使用了 Sorted Set 集合类型。
GEO 类型使用 GeoHash 编码方法实现了经纬度到 Sorted Set 中元素权重分数的转换,这其中的两个关键机制就是「对二维地图做区间划分」和「对区间进行编码」。一组经纬度落在某个区间后,就用区间的编码值来表示,并把编码值作为 Sorted Set 元素的权重分数。
这样一来,我们就可以把经纬度保存到 Sorted Set 中,利用 Sorted Set 提供的“按权重进行有序范围查找”的特性,实现 LBS 服务中频繁使用的“搜索附近”的需求。
# 存储指定的地理空间位置,可以将一个或多个经度(longitude)、纬度(latitude)、位置名称(member)添加到指定的 key 中。
GEOADD key longitude latitude member [longitude latitude member ...]
# 从给定的 key 里返回所有指定名称(member)的位置(经度和纬度),不存在的返回 nil。
GEOPOS key member [member ...]
# 返回两个给定位置之间的距离。
GEODIST key member1 member2 [m|km|ft|mi]
# 根据用户给定的经纬度坐标来获取指定范围内的地理位置集合。
GEORADIUS key longitude latitude radius m|km|ft|mi [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count] [ASC|DESC] [STORE key] [STOREDIST key]
这里以滴滴叫车的场景为例,介绍下具体如何使用 GEO 命令:GEOADD 和 GEORADIUS 这两个命令。
假设车辆 ID 是 33,经纬度位置是(116.034579,39.030452),我们可以用一个 GEO 集合保存所有车辆的经纬度,集合 key 是 cars:locations。
执行下面的这个命令,就可以把 ID 号为 33 的车辆的当前经纬度位置存入 GEO 集合中:
GEOADD cars:locations 116.034579 39.030452 33
当用户想要寻找自己附近的网约车时,LBS 应用就可以使用 GEORADIUS 命令。
例如,LBS 应用执行下面的命令时,Redis 会根据输入的用户的经纬度信息(116.054579,39.030452 ),查找以这个经纬度为中心的 5 公里内的车辆信息,并返回给 LBS 应用。
GEORADIUS cars:locations 116.054579 39.030452 5 km ASC COUNT 10
Redis Stream 是 Redis 5.0 版本新增加的数据类型,Redis 专门为消息队列设计的数据类型。
在 Redis 5.0 Stream 没出来之前,消息队列的实现方式都有着各自的缺陷,例如:
基于以上问题,Redis 5.0 便推出了 Stream 类型也是此版本最重要的功能,用于完美地实现消息队列,它支持消息的持久化、支持自动生成全局唯一 ID、支持 ack 确认消息的模式、支持消费组模式等,让消息队列更加的稳定和可靠。
Stream 消息队列操作命令:
生产者通过 XADD 命令插入一条消息:
# * 表示让 Redis 为插入的数据自动生成一个全局唯一的 ID
# 往名称为 mymq 的消息队列中插入一条消息,消息的键是 name,值是 xiaolin
> XADD mymq * name xiaolin
"1654254953808-0"
插入成功后会返回全局唯一的 ID:"1654254953808-0"。消息的全局唯一 ID 由两部分组成:
消费者通过 XREAD 命令从消息队列中读取消息时,可以指定一个消息 ID,并从这个消息 ID 的下一条消息开始进行读取(注意是输入消息 ID 的下一条信息开始读取,不是查询输入ID的消息)。
# 从 ID 号为 1654254953807-0 的消息开始,读取后续的所有消息(示例中一共 1 条)。
> XREAD STREAMS mymq 1654254953807-0
1) 1) "mymq"
2) 1) 1) "1654254953808-0"
2) 1) "name"
2) "xiaolin"
如果想要实现阻塞读(当没有数据时,阻塞住),可以调用 XRAED 时设定 BLOCK 配置项,实现类似于 BRPOP 的阻塞读取操作。
比如,下面这命令,设置了 BLOCK 10000 的配置项,10000 的单位是毫秒,表明 XREAD 在读取最新消息时,如果没有消息到来,XREAD 将阻塞 10000 毫秒(即 10 秒),然后再返回。
# 命令最后的“$”符号表示读取最新的消息
> XREAD BLOCK 10000 STREAMS mymq $
(nil)
(10.00s)
Stream 的基础方法,使用 xadd 存入消息和 xread 循环阻塞读取消息的方式可以实现简易版的消息队列,交互流程如下图所示:
前面介绍的这些操作 List 也支持的,接下来看看 Stream 特有的功能。
Stream 可以以使用 XGROUP 创建消费组,创建消费组之后,Stream 可以使用 XREADGROUP 命令让消费组内的消费者读取消息。
创建两个消费组,这两个消费组消费的消息队列是 mymq,都指定从第一条消息开始读取:
# 创建一个名为 group1 的消费组,0-0 表示从第一条消息开始读取。
> XGROUP CREATE mymq group1 0-0
OK
# 创建一个名为 group2 的消费组,0-0 表示从第一条消息开始读取。
> XGROUP CREATE mymq group2 0-0
OK
消费组 group1 内的消费者 consumer1 从 mymq 消息队列中读取所有消息的命令如下:
# 命令最后的参数“>”,表示从第一条尚未被消费的消息开始读取。
> XREADGROUP GROUP group1 consumer1 STREAMS mymq >
1) 1) "mymq"
2) 1) 1) "1654254953808-0"
2) 1) "name"
2) "xiaolin"
消息队列中的消息一旦被消费组里的一个消费者读取了,就不能再被该消费组内的其他消费者读取了,即同一个消费组里的消费者不能消费同一条消息。
比如说,我们执行完刚才的 XREADGROUP 命令后,再执行一次同样的命令,此时读到的就是空值了:
> XREADGROUP GROUP group1 consumer1 STREAMS mymq >
(nil)
但是,不同消费组的消费者可以消费同一条消息(但是有前提条件,创建消息组的时候,不同消费组指定了相同位置开始读取消息)。
比如说,刚才 group1 消费组里的 consumer1 消费者消费了一条 id 为 1654254953808-0 的消息,现在用 group2 消费组里的 consumer1 消费者消费消息:
> XREADGROUP GROUP group2 consumer1 STREAMS mymq >
1) 1) "mymq"
2) 1) 1) "1654254953808-0"
2) 1) "name"
2) "xiaolin"
因为我创建两组的消费组都是从第一条消息开始读取,所以可以看到第二组的消费者依然可以消费 id 为 1654254953808-0 的这一条消息。因此,不同的消费组的消费者可以消费同一条消息。
使用消费组的目的是让组内的多个消费者共同分担读取消息,所以,我们通常会让每个消费者读取部分消息,从而实现消息读取负载在多个消费者间是均衡分布的。
例如,我们执行下列命令,让 group2 中的 consumer1、2、3 各自读取一条消息。
# 让 group2 中的 consumer1 从 mymq 消息队列中消费一条消息
> XREADGROUP GROUP group2 consumer1 COUNT 1 STREAMS mymq >
1) 1) "mymq"
2) 1) 1) "1654254953808-0"
2) 1) "name"
2) "xiaolin"
# 让 group2 中的 consumer2 从 mymq 消息队列中消费一条消息
> XREADGROUP GROUP group2 consumer2 COUNT 1 STREAMS mymq >
1) 1) "mymq"
2) 1) 1) "1654256265584-0"
2) 1) "name"
2) "xiaolincoding"
# 让 group2 中的 consumer3 从 mymq 消息队列中消费一条消息
> XREADGROUP GROUP group2 consumer3 COUNT 1 STREAMS mymq >
1) 1) "mymq"
2) 1) 1) "1654256271337-0"
2) 1) "name"
2) "Tom"
基于 Stream 实现的消息队列,如何保证消费者在发生故障或宕机再次重启后,仍然可以读取未处理完的消息?
Streams 会自动使用内部队列(也称为 PENDING List)留存消费组里每个消费者读取的消息,直到消费者使用 XACK 命令通知 Streams“消息已经处理完成”。
消费确认增加了消息的可靠性,一般在业务处理完成之后,需要执行 XACK 命令确认消息已经被消费完成,整个流程的执行如下图所示:
如果消费者没有成功处理消息,它就不会给 Streams 发送 XACK 命令,消息仍然会留存。此时,消费者可以在重启后,用 XPENDING 命令查看已读取、但尚未确认处理完成的消息。
例如,我们来查看一下 group2 中各个消费者已读取、但尚未确认的消息个数,命令如下:
127.0.0.1:6379> XPENDING mymq group2
1) (integer) 3
2) "1654254953808-0" # 表示 group2 中所有消费者读取的消息最小 ID
3) "1654256271337-0" # 表示 group2 中所有消费者读取的消息最大 ID
4) 1) 1) "consumer1"
2) "1"
2) 1) "consumer2"
2) "1"
3) 1) "consumer3"
2) "1"
如果想查看某个消费者具体读取了哪些数据,可以执行下面的命令:
# 查看 group2 里 consumer2 已从 mymq 消息队列中读取了哪些消息
> XPENDING mymq group2 - + 10 consumer2
1) 1) "1654256265584-0"
2) "consumer2"
3) (integer) 410700
4) (integer) 1
可以看到,consumer2 已读取的消息的 ID 是 1654256265584-0。
一旦消息 1654256265584-0 被 consumer2 处理了,consumer2 就可以使用 XACK 命令通知 Streams,然后这条消息就会被删除。
> XACK mymq group2 1654256265584-0
(integer) 1
当我们再使用 XPENDING 命令查看时,就可以看到,consumer2 已经没有已读取、但尚未确认处理的消息了。
> XPENDING mymq group2 - + 10 consumer2
(empty array)
好了,基于 Stream 实现的消息队列就说到这里了,小结一下:
Redis 基于 Stream 消息队列与专业的消息队列有哪些差距?
一个专业的消息队列,必须要做到两大块:
1、Redis Stream 消息会丢失吗?
使用一个消息队列,其实就分为三大块:生产者、队列中间件、消费者,所以要保证消息就是保证三个环节都不能丢失数据。
Redis Stream 消息队列能不能保证三个环节都不丢失数据?
可以看到,Redis 在队列中间件环节无法保证消息不丢。像 RabbitMQ 或 Kafka 这类专业的队列中间件,在使用时是部署一个集群,生产者在发布消息时,队列中间件通常会写「多个节点」,也就是有多个副本,这样一来,即便其中一个节点挂了,也能保证集群的数据不丢失。
2、Redis Stream 消息可堆积吗?
Redis 的数据都存储在内存中,这就意味着一旦发生消息积压,则会导致 Redis 的内存持续增长,如果超过机器内存上限,就会面临被 OOM 的风险。
所以 Redis 的 Stream 提供了可以指定队列最大长度的功能,就是为了避免这种情况发生。
当指定队列最大长度时,队列长度超过上限后,旧消息会被删除,只保留固定长度的新消息。这么来看,Stream 在消息积压时,如果指定了最大长度,还是有可能丢失消息的。
但 Kafka、RabbitMQ 专业的消息队列它们的数据都是存储在磁盘上,当消息积压时,无非就是多占用一些磁盘空间。
因此,把 Redis 当作队列来使用时,会面临的 2 个问题:
所以,能不能将 Redis 作为消息队列来使用,关键看你的业务场景:
补充:Redis 发布/订阅机制为什么不可以作为消息队列?
发布订阅机制存在以下缺点,都是跟丢失数据有关:
所以,发布/订阅机制只适合即时通讯的场景,比如构建哨兵集群(opens new window)的场景采用了发布/订阅机制。
Redis 常见的五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)及 Zset(sorted set:有序集合)。
这五种数据类型都由多种数据结构实现的,主要是出于时间和空间的考虑,当数据量小的时候使用更简单的数据结构,有利于节省内存,提高性能。
这五种数据类型与底层数据结构对应关系图如下,左边是 Redis 3.0版本的,也就是《Redis 设计与实现》这本书讲解的版本,现在看还是有点过时了,右边是现在 Github 最新的 Redis 代码的。
可以看到,Redis 数据类型的底层数据结构随着版本的更新也有所不同,比如:
Redis 五种数据类型的应用场景:
Redis 后续版本又支持四种数据类型,它们的应用场景如下:
针对 Redis 是否适合做消息队列,关键看你的业务场景: