- 仅仅使用pytorch来手撕transformer架构(4):解码器和解码器模块类的实现和向前传播
KangkangLoveNLP
手撕系列#transformerpytorchtransformer人工智能深度学习python机器学习
仅仅使用pytorch来手撕transformer架构(4):解码器和解码器模块类的实现和向前传播仅仅使用pytorch来手撕transformer架构(1):位置编码的类的实现和向前传播最适合小白入门的Transformer介绍仅仅使用pytorch来手撕transformer架构(2):多头注意力MultiHeadAttention类的实现和向前传播仅仅使用pytorch来手撕transfor
- 深度学习:CPU和GPU算力
壹十壹
深度学习深度学习gpu算力人工智能
一、算力“算力”(ComputingPower)通常是指计算机或计算系统执行计算任务的能力。它是衡量系统处理数据、运行算法以及执行计算任务效率的重要指标。根据上下文,算力可以在以下几种场景中具体化:1.单机算力CPU算力:中央处理器的计算能力,通常用核心数量(cores)、时钟频率(GHz)、以及每秒浮点运算次数(FLOPS)等指标衡量。GPU算力:图形处理单元用于并行处理的能力,尤其是在深度学习
- Digicert SSL 证书
https
Digicert作为世界最早的证书品牌,是全球领先的数字安全解决方案提供商,Digicert在SSL证书领域具有显著的市场份额和影响力。DigicertSSL证书以其高度的安全性和可靠性赢得了全球用户的信赖。众多金融机构、政府机构、电子商务网站等关键领域都选择了DigicertSSL证书来保护其网络通信安全。一、基本功能加密通信:通过使用公钥加密技术,确保用户与网站之间的数据传输是安全的。身份验证
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- CSS入门指南:从零开始学习网页开发——(一)简介
GIS小白吃
css学习前端
一、什么是CSS?CSS(CascadingStyleSheets,层叠样式表)是一种用于描述网页的外观和布局的样式表语言。它通过定义网页元素的样式(如颜色、字体、边距等)来与HTML内容分离,提升了网页的可维护性和设计的灵活性。CSS的核心目的是增强网页的表现力。早期的网页仅使用HTML来进行内容的展示,但由于HTML只能描述内容的结构,页面设计和内容变得难以管理。于是,CSS作为一种辅助技术应
- HSPF模型有哪些优势?可以进行哪些模拟?HSPF模型的原理与组成;前处理、后处理与参数率定;水质与泥沙模块等
WangYan2022
水文水资源HSPF模型水文水质模拟泥沙模拟
HSPF模型与SWAT模型一样都是著名的水文模型软件,在世界各地的水文模拟中得到广泛的应用。由于种种原因,HSPF模型在国内的影响力不如SWAT;但是,HSPF模型也有其自身的优势,比如:1.它有很高集成度的前后处理软件,减轻建模的负担;2.它可以自主调节水文响应单元的大小,模型有更好的灵活性;3.它可以输出最小为小时的结果,比SWAT更方便;4.它可以与EFDC等水动力模型相耦合等。HSPF(H
- AI人才争夺战升级、算力投资加码与阿里千亿AI豪赌:重塑未来科技格局的三大核心战场
meisongqing
人工智能科技
2025年3月,全球科技领域最引人注目的动态,莫过于AI人才争夺的白热化、算力投资的规模化竞赛,以及阿里巴巴以3800亿元重注押宝AI的豪赌。这三股力量交织,不仅推动了中国科技产业的深度变革,更预示着一场全球技术话语权的重新洗牌。---一、AI人才争夺战:从“高薪挖角”到“生态争夺”全球AI产业的爆发式增长,使得顶尖人才成为最稀缺的资源。据预测,到2030年,中国AI人才缺口将达400万,而美国A
- 解决方案评测|通义万相AI绘画创作【阿里产品系测评】
一键难忘
精通AI实战千例专栏合集AI作画通义万相
文章目录解决方案评测|通义万相AI绘画创作一、活动参与及部署体验二、针对通义万相AI绘画创作方案的详细评测反馈1)资源部署及场景API调用体验过程是否得到足够的引导,操作是否顺畅?2)该方案是否满足您的需求?3)针对业务场景,该方案还有哪些可以改进的图片生成能力或在您的业务场景中,还希望它可以提供哪些新的功能?4)同比其他类似产品方案,该方案在成本、易用性、应用场景上是否有竞争力?您是否愿意推荐团
- Flink实时流处理入门与实践
随风九天
springjavaFlink实时流
一、引言1.1实时流处理的重要性在当今数据驱动的时代,实时数据处理变得越来越重要。企业需要从不断产生的大量数据中快速提取有价值的信息,以支持决策制定和业务优化。实时流处理技术能够实时处理数据流,提供即时的洞察和响应,从而提高业务效率和竞争力。1.2Flink简介ApacheFlink是一个开源的分布式流处理框架,支持批处理和流处理。Flink提供了高吞吐量、低延迟和精确一次(exactly-onc
- 我与DeepSeek的深度实践:重新定义智能编程的边界
一叶孤舟111
python人工智能
引言:从质疑到依赖的认知跃迁在ChatGPT掀起AI编程革命之初,我曾对代码生成工具持保留态度。直到2023年接触DeepSeek,这个来自中国的AI编程助手彻底改变了我的开发模式。经过200+小时的深度使用,我在实际项目中验证了其惊人潜力,本文将分享最具实践价值的经验总结。一、效率革命:实测数据背后的生产力跃升1.1代码生成效率对比任务类型传统耗时DeepSeek耗时准确率CRUD接口开发2.5
- 使用CharacterTextSplitter进行文本分割的实战指南
bBADAS
python
在处理长文本时,将其切割成较小的片段是常见的需求,尤其是在自然语言处理任务中。CharacterTextSplitter是一个强大的工具,用于通过字符分隔符对文本进行分割,本文将深入介绍如何使用它进行文本处理。技术背景介绍当面对一份冗长的文本时,比如总统演讲稿、法律文档等,我们常常需要将其拆分成便于处理的小段。CharacterTextSplitter正是为此而生的一个轻量级工具,专门用于基于特定
- 朗之万动力学(Langevin dynamics)
xwhking
算法
朗之万动力学(Langevindynamics)是一种模拟经典粒子运动的方法,常用于物理、化学和材料科学等领域。它是由法国物理学家保罗·朗之万(PaulLangevin)于1908年提出的,用于描述布朗运动,即微小粒子在流体中的随机运动。在朗之万动力学中,粒子的运动不仅受到经典力学中描述的确定性力的作用(如势能场产生的力),还受到一种随机力(噪声项)和阻力(摩擦项)的作用。这种随机力和阻力项用来模
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- 清华大学DeepSeek系列全套PPT
2501_90850551
人工智能pdf
链接:https://pan.quark.cn/s/70da09749050「清华大学DeepSeek系列PPT」共7讲,涵盖AI工具实操、职场效率提升、科研辅助、家庭教育等核心场景,提供从入门到进阶的完整学习路径
- Python编程案例教程PPT2022,Python编程案例教程答案
a1237567892
信息可视化
欢迎来到今天的讨论,我们将探讨,Python编程案例教程第2版航空工业出版社高登刘洋Python编程案例教程刘庆,姚丽娜,余美华电子版,一起探索吧!在接口自动化工作中,经常需要处理文字识别的任务,而OCR库能够帮助我们将图像中的文字提取出来,所以本文为大家整理了四个常用的OCR库以及它们的用法,需要的可以参考下Python客栈送红包、纸质书1、pyocr2、pytesseract3、python-
- 学习数据结构是学完一章立马做题吗?
AredRabbit
数据结构c++学习方法
学习数据结构时,是否学完一章后立即做题还是等到第二天再做,取决于个人的学习习惯和记忆特点。以下是一些建议,帮助你做出更适合自己的选择:1.学完一章后立即做题优点:巩固知识:刚学完一章时,知识还新鲜在脑海中,立即做题可以帮助你更好地理解和巩固所学内容。发现问题:通过做题可以及时发现理解上的漏洞或误区,便于立即纠正。提高效率:趁热打铁,避免拖延,学习效果更好。适合人群:记忆力较强,能够快速吸收新知识的
- 部署质量管理 QMS 软件系统:必要功能介绍——全星科技
全星007
质量管理半导体汽车部件科技
在当今竞争激烈的制造业市场中,质量管理是企业生存与发展的核心竞争力之一。传统的质量管理方式已难以满足现代制造业对高效、精准、协同的要求,而全星质量管理QMS软件系统凭借其先进的技术架构和全面的功能设计,为制造业企业提供了全新的质量管理解决方案。全星质量管理QMS软件系统能够覆盖制造业质量管理的全流程,从原材料进厂检验(IQC)、生产过程检验(IPQC)、最终成品检验(FQC)到售后质量反馈,实现了
- 解密DeepSeek-R1模型微调实战:VIP专属技巧助你轻松掌握行业核心技术
竹木有心
人工智能
引言大模型微调已成为AI工程师的核心竞争力,但90%的学习者卡在以下痛点:❌开源数据集质量参差不齐❌实验环境搭建耗时易出错❌行业级调优方案闭源难获取CSDN大模型VIP专项计划针对上述问题,提供:✅金融/医疗/法律三大领域高质量微调数据集✅云端GPU实验环境即开即用✅行业头部企业实战案例库(附完整代码)一、基础篇:快速搭建微调环境(免费技巧)1.1使用HuggingFace标准流程fromtran
- 程序员必看!手把手教你玩转DeepSeek大模型的5个实战技巧
后端
上个月在克拉玛依云计算产业园,我亲眼见到值班工程师用DeepSeek-R1大模型自动生成油田设备监测报告,原本需要3小时的工作现在10分钟就能完成。这让我突然意识到,这个刷爆朋友圈的AI工具,已经悄悄改变了程序员的工作方式。今天就跟大家聊聊,怎么让这个"代码外挂"真正成为你的生产力加速器。最近广东15个城市的政务系统集体升级,背后的秘密武器就是DeepSeek大模型。深圳程序员48小时完成全栈适配
- MPPT与PWM充电原理及区别详解
程序员
MPPT(最大功率点跟踪)和PWM(脉宽调制)是太阳能充电控制器中常用的两种技术,它们在原理、效率和适用场景上有显著区别。以下是两者的详细对比:1.工作原理PWM(脉宽调制)核心机制:通过快速开关(MOSFET等)调节太阳能板与电池之间的连接,使太阳能板电压被强制拉低至电池电压水平。充电过程:初期以大电流快速充电(电池电压较低)。当电池接近充满时,通过调节脉冲宽度(占空比)减少电流,防止过充。电压
- 二维码标签制作攻略:如何选择苗木树牌制作工具?
二维码标签
如果你曾在城市街道或公园里驻足观察,会发现许多树木都挂着一块小小的金属或塑料标牌,上面印着名称、科属等基本信息。这些传统树牌看似“尽职尽责”,实则作用有限:信息量不足:一块巴掌大的标牌,最多只能写下树木的学名、科属和简短介绍。对于游客感兴趣的趣味科普(如古树历史故事)以及突发事件的应急指引(比如,台风天气后树木倾倒上报),传统标牌却无能为力。更新维护成本高:树木危死补种后,传统标牌需要整体更换,不
- 智能制造数字孪生概念模型与关键技术
人工智能深度学习
智能制造是新质生产力形成和发展的重要驱动力,是工业4.0/5.0的核心,以及推动实现高效、灵活、绿色、智能的生产方式。数字孪生技术作为智能制造的关键技术之一,通过构建物理设备与虚拟模型之间的实时映射和同步,为制造业的智能化、高效化提供有力支持,推动制造业的转型升级。智能制造数字孪生是在现代传感技术、网络技术、自动化技术、拟人化智能技术等技术的基础上,通过智能化的感知、人机交互、决策和执行技术,对产
- 智能遥感新质生产力:ChatGPT、Python和OpenCV强强联合;空天地遥感数据分析的全流程;地面数据、无人机数据、卫星数据、多源数据等处理
小艳加油
DeepSeekChatGPT遥感遥感新质生产力ChatGPTOpenCV遥感数据处理
通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。不仅涵盖了从零基础入门Python编程、OpenCV视觉处理的基础知识,还将借助ChatGPT智能支持,引导您掌握遥感影像识别和分析的进阶技术。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、
- 大模型交互-超拟人合成
定制开发才有价值
交互开发语言java
1、超拟人合成:将文字转化为自然流畅的人声,在实时语音合成的基础上,精准模拟人类的副语言现象,如呼吸、叹气、语速变化等,使得语音不仅流畅自然,更富有情感和生命力。2、唤醒的持久运行--->合成能力加持(唤醒成功后语音答复:主人我在)--->调用在线或离线听写能力(建议用讯飞在线效果好)--->识别用户说的语音成文字后发给大模型--->建议调用讯飞星火认知大模型--->获取大模型答案后调用语音合成(
- word导出高清PDF
linff911
pdf
参考:解决PPT导出PDF分辨率过低问题_ppt导出pdf清晰度不高怎么解决-CSDN博客之前被论文折磨的发疯,遇到了点问题,遂写此篇,参考上面这位大神的文章,顺利解决了问题,插个眼留给自己用首先我的电脑上有FoxitPDF阅读器,没有的话不知道能不能行,另外本篇是指word里的图片就比较高清,但是导出pdf变模糊的情况;步骤指南1.选择FoxitPDF打印机在Word中,点击左上角文件选项:选择
- 数据集与云计算:云端数据集的管理与应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大数据时代的数据挑战步入21世纪,我们见证了信息技术的爆炸式增长,数据以前所未有的速度产生、存储和使用。从社交媒体互动到科学研究,从电子商务交易到物联网传感器,各行各业都被海量数据所淹没。这种数据爆炸式增长带来了前所未有的机遇和挑战。1.1.1机遇:数据驱动型决策数据的激增为企业和组织提供了前所未有的洞察力。通过分析和理解这些数据,我们可以识别趋势、预测未来行为并做出更明智的决策
- AWS原生架构下的服务器性能与成本平衡之道——海外业务云端实践
AWS官方合作商
aws云计算服务器云原生
在数字化转型的浪潮中,企业对服务器的选择从未如此谨慎:既要满足业务全球化部署的灵活性和性能需求,又需在成本与稳定性之间找到平衡。作为深耕海外云服务领域的从业者,我们观察到,AWS凭借其原生的技术架构与全球化基础设施,正在成为企业出海场景下的主流选择。本文将从技术视角出发,以客观数据为基础,探讨AWS云服务器在性能与价格上的竞争力。一、原生架构如何释放服务器性能潜力?AWS的服务器性能优势并非单纯依
- AWS WorkSpaces:企业级云桌面的三大杀手锏,重新定义远程生产力
AWS官方合作商
aws云计算远程工作sass
引言:当远程办公从“应急方案”变为“核心战略”2023年Gartner报告显示,全球78%的企业已将混合办公纳入长期战略。但传统VDI方案的高成本、低弹性与复杂运维,让IT管理者陷入两难。如何让员工在任意设备安全访问企业级算力?AmazonWorkSpaces以云原生DaaS(桌面即服务)破局,实测部署效率提升90%,运维成本降低60%。一、揭秘AmazonWorkSpaces:云桌面的技术进化论
- AI换脸被滥用:AI雷军被骂8天上热搜!谁在操控我的脸?
大力财经
人工智能
文/大力财经作者/魏力2025年3月8日,全国人大代表雷军在两会期间的发言引发轩然大波。这位科技大佬首次披露了自己遭遇的AI"数字追杀":去年国庆假期,"AI雷军"在短视频平台持续发布辱骂内容长达8天,累计播放量超2亿次。更令人震惊的是,这些伪造视频的破绽微乎其微——不仅声音语调惟妙惟肖,甚至连面部微表情都与真人高度吻合。雷军表示,当他想通过法律维权时,却发现对此没有专门的立法,只能用隐私权、肖像
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><