粒子群算法求解港口泊位调度问题(MATLAB代码)

粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,它通过模拟鸟群或鱼群的行为来寻找最优解。在泊位调度问题中,目标是最小化所有船只在港时间的总和,而PSO算法可以帮助我们找到一个较优的调度方案。

泊位调度问题是指在有限数量的泊位资源下,安排船只的到港和离港时间,以最小化船只在港等待的时间。该问题存在多个约束条件,如泊位容量、船只到港和离港时间窗口等。

PSO算法的核心思想是通过模拟粒子在解空间中的移动来搜索最优解。每个粒子代表一个解,并根据自身的历史最佳解和群体的历史最佳解进行调整。粒子根据自身和邻域最优解的信息更新速度和位置,以逐渐靠近最优解。

在泊位调度问题中,每个粒子的位置可以表示为一个泊位调度方案,其中每个船只被分配到一个特定的泊位,并确定其到港和离港时间。粒子的速度和位置更新规则可以根据目标函数来定义,以使船只在港时间的总和最小化。

PSO算法的优点在于简单且易于实现,能够在高维解空间中找到较优解。然而,对于泊位调度问题这样的复杂问题,PSO算法可能会陷入局部最优解。为了克服这个问题,可以采用多种改进方法,如引入局部搜索机制或组合其他优化算法。

总结而言,粒子群算法是一种有效的优化算法,适用于解决泊位调度问题。通过调整粒子的速度和位置,并结合合适的目标函数,可以找到一个较优的泊位调度方案,以最小化船只在港时间的总和。然而,对于复杂的问题,仍然需要进一步的研究和改进。

粒子群算法求解港口泊位调度问题(MATLAB代码)_第1张图片

流程如下:

粒子群算法求解港口泊位调度问题(MATLAB代码)_第2张图片

粒子群算法求解港口泊位调度问题(MATLAB代码)_第3张图片

粒子群算法求解港口泊位调度问题(MATLAB代码)_第4张图片

数据: 

停泊时间:

船舶泊位

1#

2#

3#

4#

5#

6#

船1

3

3

3.290323

3.290323

3.290323

3.290323

船2

3.29

3.29

3.608387

3.608387

3.608387

3.608387

船3

3.35

3.35

3.674194

3.674194

3.674194

3.674194

船4

5

5

5.483871

5.483871

5.483871

5.483871

船5

1.94

1.94

2.127742

2.127742

2.127742

2.127742

船6

1.45

1.45

1.590323

1.590323

1.590323

1.590323

船7

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船8

4.61

4.61

5.056129

5.056129

5.056129

5.056129

船9

5.06

5.06

5.549677

5.549677

5.549677

5.549677

船10

7.29

7.29

7.995484

7.995484

7.995484

7.995484

船11

2.68

2.68

2.939355

2.939355

2.939355

2.939355

船12

5.74

5.74

6.295484

6.295484

6.295484

6.295484

船13

0.65

0.65

0.712903

0.712903

0.712903

0.712903

船14

1.26

1.26

1.381935

1.381935

1.381935

1.381935

船15

0.81

0.81

0.888387

0.888387

0.888387

0.888387

船16

1.58

1.58

1.732903

1.732903

1.732903

1.732903

船17

0.77

0.77

0.844516

0.844516

0.844516

0.844516

船18

1

1

1.096774

1.096774

1.096774

1.096774

船19

3.1

3.1

3.4

3.4

3.4

3.4

船20

0.71

0.71

0.77871

0.77871

0.77871

0.77871

船21

0.97

0.97

1.063871

1.063871

1.063871

1.063871

船22

3.23

3.23

3.542581

3.542581

3.542581

3.542581

到港时间

到港时间

装卸量

0:00

93

3:00

102

3:20

104

3:20

155.25

6:00

60

6:00

45

6:20

30

8:00

143

8:00

157

9:00

226

10:00

83

10:30

178

11:00

20

12:00

39

12:00

25

14:40

49

14:40

24

15:00

31

15:00

96

18:50

22

21:10

30

22:00

100

装卸速度

装卸速度

泊位1

31

泊位2

31

泊位3

34

泊位4

35

泊位5

36

泊位6

37

程序结果:

粒子群算法求解港口泊位调度问题(MATLAB代码)_第5张图片

粒子群算法求解港口泊位调度问题(MATLAB代码)_第6张图片

粒子群算法优化得到最优成本

Valuebest =

          70.7209677419355

粒子群算法优化得到最优粒子

psobest =

  1 至 6 列

                        -1        -0.276376816044633        0.0110834051789061        -0.588322236509362        -0.871896419169566                         1

  7 至 12 列

         0.882043641594225         0.394648902367656         0.649790379151507                        -1       -0.0590250701437167                        -1

  13 至 18 列

                         1                         1         0.941078162307071                         1         0.925858029802935        -0.755714050637173

  19 至 24 列

         0.642324983266078                         1                         1                         1          6.33758011393659          5.85939735126611

  25 至 30 列

                      6.99          2.49649225428723          4.78659200827198                      6.99                      6.99          5.21051862147312

  31 至 36 列

          4.23951824644256                         1          2.42088917195685          3.73458639406582                      6.99                      6.99

  37 至 42 列

          2.24808981777205          5.21345040727043          4.55442530362547          1.11174406517414                         1                         1

  43 至 44 列

          1.69713330740672          6.04705817521954

y =

          70.7209677419355

G =

                         1                         6                         0          3.29032258064516

                        10                         1                         9                     16.29

                        12                         3                      10.5          16.7954838709677

                         5                         4                         6          8.12774193548387

                        18                         1                     16.29                     17.29

                         4                         2          3.33333333333333          8.33333333333333

                         2                         5                         3          6.60838709677419

                        11                         2                        10                     12.68

                         3                         6          3.33333333333333          7.00752688172043

                         8                         5                         8          13.0561290322581

                        19                         1                     17.29                     20.39

                         9                         4          8.12774193548387          13.6774193548387

                         7                         6          7.00752688172043          8.07139784946237

                        17                         4          14.6666666666667          15.5111827956989

                        15                         2                     12.68                     13.49

                         6                         6          8.07139784946237          9.66172043010753

                        13                         6                        11          11.7129032258064

                        14                         6                        12           13.381935483871

                        16                         5          14.6666666666667          16.3995698924731

                        20                         1                     20.39                      21.1

                        21                         1          21.1666666666667          22.1366666666667

                        22                         6                        22          25.5425806451613

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

S =

     1    10    12     5    18     4     2    11     3     8    19     9     7    17    15     6    13    14    16    20    21    22

T =

     6     5     6     2     4     6     6     5     4     1     2     3     6     6     2     5     4     1     1     1     1     6

Stime =

                         0          3.29032258064516

                         3          6.60838709677419

          3.33333333333333          7.00752688172043

          3.33333333333333          8.33333333333333

                         6          8.12774193548387

          8.07139784946237          9.66172043010753

          7.00752688172043          8.07139784946237

                         8          13.0561290322581

          8.12774193548387          13.6774193548387

                         9                     16.29

                        10                     12.68

                      10.5          16.7954838709677

                        11          11.7129032258064

                        12           13.381935483871

                     12.68                     13.49

          14.6666666666667          16.3995698924731

          14.6666666666667          15.5111827956989

                     16.29                     17.29

                     17.29                     20.39

                     20.39                      21.1

          21.1666666666667          22.1366666666667

                        22          25.5425806451613

>>

你可能感兴趣的:(车间调度,算法,matlab,机器学习)