PyTorch基础-Tensors属性、Tensor的运算

PyTorch的基本概念

Tensor的基本概念

张量高于标量、向量、矩阵
标量说零维的张量,向量是一维的张量,矩阵是二维的张量

Tensor与机器学习的关系

image.png

Tensor的创建

函数 功能
Tensor(*size) 基础构造函数
Tensor(data) 类似np.array
ones(*size) 全1Tensor
zeros(*size) 全0Tensor
eye(*size) 对角线为1,其他为0
arange(s,e,step) 从s到e,步长为step
linspace(s,e,steps) 从s到e,均匀切分成steps份
rand/randn(*size) 均匀/标准分布
normal(mean,std)/uniform_(from,to) 正态分布/均匀分布
randperm(m) 随机排列

实例
PyTorch基础-Tensors属性、Tensor的运算_第1张图片
随机数 正态分布 标准分布
PyTorch基础-Tensors属性、Tensor的运算_第2张图片
序列
PyTorch基础-Tensors属性、Tensor的运算_第3张图片

Tensor的属性

  • 每一个Tensor有torch.dtype、torch.device、torch.layout三种属性
  • torch.device 标识了torch.Tensor对象在创建之后所存储在的设备名称
  • torch.layout表示torch.Tensor内存布局的对象
torch.tensor([1,2,3],dtype=torch.float32,device=torch.device('cpu'))

稀疏的张量

  • torch.sparse_coo_tensor
  • coo类型表示了非零元素的坐标形式
indices = torch.tensor([0,1,1],[2,0,2]])
values = torch.tensor([3,4,5],dtype=torch.float32)
x = torch.sparse_coo_tensor(i,v,[2,4])
dev = torch.device("cpu")
torch.tensor([2,2],device=dev)
torch.tensor([2,2],dtype=torch.float32,device=dev)

PyTorch基础-Tensors属性、Tensor的运算_第4张图片
稀疏的张量

i=torch.tensor([[0,1,2],[0,1,2]])
v=torch.tensor([1,2,3])
torch.sparse_coo_tensor(i,v,(4,4))

image.png
转成稠密的张量

torch.sparse_coo_tensor(i,v,(4,4)).to_dense()

image.png

Tensor的算术运算

加法运算

c=a+b
c=torch.add(a,b)
a.add(b)
a.add_(b)#会修改a的值

PyTorch基础-Tensors属性、Tensor的运算_第5张图片

减法运算

c=a-b
c=torch.sub(a,b)
a.sub(b)
a.sub_(b)#会修改a的值

PyTorch基础-Tensors属性、Tensor的运算_第6张图片

乘法运算

  • 哈达玛积(element wise,对应元素相乘)
c=a*b
c=torch.mul(a,b)
a.mul(b)
a.mul_(b)

PyTorch基础-Tensors属性、Tensor的运算_第7张图片

除法运算

c=a/b
c=torch.div(a,b)
a.div(b)
a.div_(b)

PyTorch基础-Tensors属性、Tensor的运算_第8张图片

矩阵运算

  • 二维矩阵乘法运算操作包括torch.mm()、torch.matmul()、@
a=torch.ones(2,1)
b=torch.ones(1,2)
print(torch.mm(a,b))
print(torch.matmul(a,b))
print(a@b)
print(a.matmul(b))
print(a.mm(b))

PyTorch基础-Tensors属性、Tensor的运算_第9张图片

  • 对于高维的Tensor(dim>2),定义其矩阵乘法仅在最后的两个维度上,要求前面的维度必须保持一致,就像矩阵的索引一样并且运算操作只有torch.matmul()
a=torch.ones(1,2,3,4)
b=torch.ones(1,2,4,3)
print(a.matmul(b))
print(torch.matmul(a,b))

PyTorch基础-Tensors属性、Tensor的运算_第10张图片

幂运算

print(torch.pow(a,2))
print(a.pow(2))
print(a**2)
print(a.pow_(2))

PyTorch基础-Tensors属性、Tensor的运算_第11张图片
e的n次方

print(torch.exp(a))
b=a.exp_()

image.png

开方运算

a.sqrt()
a.sqrt_()

image.png

对数

torch.log2(a)
torch.log10(a)
torch.log(a)
torch.log_(a)

image.png

Tensor的取整/取余运算

  • .floor()向下取整数
  • .ceil()向上取整数
  • .round()四舍五入
  • .trunc()裁剪,只取整数部分
  • .frac()只取小数部分
  • %取余

PyTorch基础-Tensors属性、Tensor的运算_第12张图片

Tensor的比较运算

torch.eq(input,other, out=None) #按成员进行等式操作,相同返回True
torch.equal(tensor1,tensor2) #如果tensor1和tensor2有相同的size和elements,则为true
torch.ge(input, other, out=None) #input>= other
torch.gt(input, other, out=None) #input>other
torch.le(input, other, out=None) #input=
torch.lt(input, other, out=None) #input
torch.ne(input, other, out=None) #input != other 不等于

排序

torch.sort(input, dim=None, descending=False, out=None) 
#对目标input进行排序
torch.topk(input, k,dim=None, largest=True, sorted=Trueout=None)
#沿着指定维度返回最大k个数值及其索引值
torch.kthvalue(input, k, dim=None, out=None)
#沿着指定维度返回第k个最小值及其索引值

Tensor判定是否为finite/inf/nan

torch.isfinite(tensor)/torch.isinf(tensor)/torch.isnan(tensor)
返回一个标记元素是否为 finite/inf/nan 的mask 张量

Tensor的三角函数

  • torch.abs(input, out=None)
  • torch.acos(input, out=None)
  • torch.asin(input, out=None)
  • torch.atan(input, out=None)
  • torch.atan2(input, inpu2out=None)
  • torch.cos(input, out=None)
  • torch.cosh(input, out=None)
  • torch.sin(input, out=None)
  • torch.sinh(input, out=None)
  • torch.tan(input, out=None)
  • torch.tanh(input, out=None)

你可能感兴趣的:(人工智能,pytorch,人工智能,python)