- 技术日报开源项目
项目介绍:项目分为资讯和图片和关于三大类,资讯分为github、hacker、SegmentFault、jobBole、技术头条、Android、ios、和all,图片是美女福利图片、并提供下载。项目已在应用宝上线:地址http://android.myapp.com/myapp/detail.htm?apkName=com.infomation.haiffeng项目用到的技术框架1:采用okht
- AlphaGPT通过国家AIGC生成式算法备案,为法律专业人士提供更加合规可靠的ai技术支持
资讯分享周
AIGC人工智能
在当前互联网信息时代,大模型算法已成各行业不可或缺的核心,不仅改善生活和工作,也在创新中展现巨大潜力。然而,随着算法应用的普及,如何合规管理算法,保护用户权益和隐私,确保公正运行,成为重要议题。日前,国内领先的法律科技企业iCourt宣布,其自主研发的法律垂类领域大模型AlphaGPT成功通过国家生成式模型深度学习合成算法备案。本次备案的通过,彰显了iCourt在法律AI领域有迈向了一个新的里程碑
- 满血DeepSeek加持的AlphaGPT,助力高文律师事务所全面拥抱AI
2025年初,中国团队精心雕琢的通用大模型DeepSeek凭借其创新的架构优化以及深入的数据挖掘技术,在逻辑推理、多轮对话和知识搜索等关键领域大放异彩,其为诸多垂直领域,特别是法律行业的智能化转型,开拓了全新的方向。2月8日,法律科技领域的领军者iCourt将旗下的AlphaGPT与DeepSeek深度融合,重磅推出业内首款“DeepSeek+法律专业”AI大模型。这一创举彻底打破了传统法律智能工
- C++11标准库算法:深入理解std::none_of
码事漫谈
c++11c++算法java
文章目录函数原型与核心语义模板参数约束实现原理与标准库设计思想与all_of/any_of的逻辑关系应用场景1.输入验证2.状态检查3.与函数对象结合4.替代传统循环性能特性与注意事项复杂度保证迭代器选择建议谓词设计要点C++标准演进与扩展总结C++11标准为STL带来了诸多革命性改进,其中算法库的扩展尤为引人注目。std::none_of作为新增的三大逻辑判断算法之一(与std::all_of、
- AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
AI生存日记
人工智能microsoftOpenAI大模型机器学习
2025年7月伊始,AI领域技术突破与产业布局齐头并进:微软推出的AI诊断工具展现出超越医生的诊断能力,上海发布重点应用场景推动技术落地,亚马逊、OpenAI等企业则在人才与算力布局上动作频频,勾勒出AI技术商业化的多元路径。微软AI诊断工具登场,医疗场景再添利器6月30日,微软在官方博客宣布推出AI诊断工具MicrosoftAIDiagnosticOrchestrator(MAI-DxO)。该工
- 【AIGC时代】OneCode前端框架入门指南:从环境搭建到第一个应用
低代码老李
OneCode实战低代码软件行业学习前端框架
在人工智能生成内容(AIGC)技术飞速发展的今天,前端开发领域正经历着前所未有的变革。AI工具能够批量生成代码,但如何将这些自动生成的代码转化为可维护、高质量的生产级应用,成为开发者面临的核心挑战。OneCode框架凭借其独特的设计理念,在这一背景下展现出显著优势,本文将带您从零开始,快速掌握OneCode框架的使用方法。一、AIGC背景下选择OneCode框架的四大理由AIGC工具的普及为前端开
- DPDK 网卡驱动 之 VFIO
唯独不开心
DPDKlinux网络
关于VFIO我遇到很多问题,也了解很多内容,所以想单独写一篇。VFIO依赖于vfio_pci模块,通常情况下,所有主流操作系统发行版默认都已包含VFIO内核模块。通常需要自己检查一下,如果没有安装的话就手动insmod一下。VFIO运行环境1.判断VFIOIOMMU是否支持BIOS是否开启虚拟化:Intel-VT虚拟化AMD-VT虚拟化系统内核是否支持对于IntelCPU,使用cat/proc/c
- 【SpringBoot】Spring Boot热部署方案的 终极深度解析,覆盖IDEA配置、JRebel原理级实操、DevTools内核机制及生产级调优策略,共分6大模块
夜雨hiyeyu.com
springbootintellij-idea后端mavenjavaideaspring
SpringBoot热部署方案的终极深度解析,覆盖IDEA配置、JRebel原理级实操、DevTools内核机制及生产级调优策略一、热部署核心原理与架构1.JVM类加载机制限制2.字节码热替换技术对比二、JRebel企业级部署全流程1.深层配置指南2.多模块项目热加载3.热替换失败解决方案三、DevTools内核级调优1.类加载隔离机制2.资源热更新策略3.生产级问题诊断四、高效协同工作流1.ID
- 三维扫描赋能文化:蔡司3D扫描仪让木质文化遗产焕发新生-沪敖3D
HuAo_3D
沪敖3D3d扫描仪蔡司三维扫描仪蔡司三维扫描技术应用
挪威文化历史博物馆在其修复工作中融入现代3D扫描技术,让数百年的历史焕发新生。文化历史博物馆的工作文化历史博物馆是奥斯陆大学的一个院系。凭借其在文化历史管理、研究和传播方面的丰富专业知识,该博物馆被誉为挪威博物馆研究领域的领先机构。馆内展出了涵盖从石器时代、维京时代、中世纪直至近代的最大规模的考古学和民族学藏品。该院系的维京船屋博物馆于1926年开放,至今仍每年吸引着众多历史爱好者前来参观。复杂的
- 物联网全景解析:核心技术、多元应用与未来趋势
物联网(IoT)作为新一代信息技术的核心载体,正通过“万物互联”重塑人类生产生活方式。以下从核心技术、应用场景、未来趋势三个维度展开全景解析。一、核心技术:构建物联网的四大支柱传感器技术:数据采集的“神经末梢”功能:将物理世界(温度、湿度、压力等)和生物世界(心率、血压)的信号转化为数字信号,是物联网感知层的基础。创新方向:微型化:MEMS传感器体积缩小至毫米级,可嵌入可穿戴设备;智能化:集成滤波
- 数字平台的未来:区块链与域名创新的融合图景
boyedu
终端域名区块链区块链域名
在数字经济浪潮中,区块链技术与域名系统的创新结合正在重塑数字平台的底层逻辑。从去中心化身份认证到抗审查的域名解析,从数字资产确权到跨平台数据互通,这一融合不仅解决了传统互联网的核心痛点,更开辟了价值互联的新纪元。一、传统域名体系的困境与区块链的破局之道传统域名系统(DNS)的集中化架构暴露出三大结构性矛盾:信任依赖风险:ICANN主导的层级管理导致单点故障隐患,2021年Fastly缓存服务器宕机
- 六大技术支柱推动元宇宙发展:从区块链到物联网
元宇宙作为数字世界与现实世界深度融合的产物,其发展依赖于六大技术支柱的协同创新,这一技术集合被形象地称为“BIGANT”(大蚂蚁)。以下是对六大技术支柱的详细解析,重点阐述区块链与物联网的核心作用:一、区块链技术(Blockchain):构建元宇宙的信任基石去中心化经济体系区块链通过NFT(非同质化通证)、DAO(去中心化自治组织)、智能合约等技术,为元宇宙提供了去中心化的价值流转机制。例如:NF
- 深入浅出之CMake工具及CMakefile文件
浩瀚之水_csdn
#Pytorch框架深度学习目标检测YOLO目标检测深度学习
一、CMake工具CMake是一个跨平台的安装(编译)工具,它可以用简单的语句来描述所有平台的安装(编译)过程。以下是对CMake的详细解析:1.1、CMake的基本概念定义:CMake是一个跨平台的自动化建构系统,它使用一种名为CMakeLists.txt的配置文件来控制软件编译过程。功能:CMake可以编译源代码、制作程序库、产生适配器(wrapper),还可以用任意的顺序建构执行档。它支持i
- STM32F103五分钟入门系列(八)SysTick滴答定时器+SysTick中断实现跑马灯
独独白
STM32F107嵌入式stm32单片机arm
学习板:STM32F103ZET6往期博客:STM32F103五分钟入门系列(一)跑马灯(库函数+寄存器)+加编程模板+GPIO总结STM32F103五分钟入门系列(二)GPIO的七大寄存器+GPIOx_LCKR作用和配置STM32F103五分钟入门系列(三)GPIO的常用库函数使用方法总结+一个网络上的误区STM32F103五分钟入门系列(四)蜂鸣器实验(库函数+寄存器)STM32F103五分钟
- 如何道破信息差,精准准备秋招?——应届生秋招全流程解析
信息差,是大多数应届生秋招失败的关键。本文将从认知差距、平台渠道、实战建议三大维度,帮你打破信息壁垒,走上offer收割之路。一、什么是秋招中的“信息差”?在秋招中,应届生之间的差距并非仅仅是技术实力,更在于“知道什么”和“知道怎么做”的能力差异。常见的信息差类型:信息差类型表现形式企业信息差不知道哪些公司在招人,不清楚岗位要求面试流程差不知道面试题类型、不清楚流程节点技术准备差不知道八股文、项目
- 筑牢 AIGC 安全防线:警惕提示词注入攻击
CS创新实验室
AIGCAIGC安全大模型提示词提示词注入
在AIGC(生成式人工智能)技术蓬勃发展的当下,其在各个领域的应用日益广泛。然而,随着AIGC技术的深入应用,安全问题也逐渐凸显,提示词注入攻击便是其中不容忽视的一大威胁。对于AIGC开发者而言,深入了解提示词注入攻击并做好防范工作,是保障AIGC系统安全稳定运行的关键。提示词注入攻击的基本知识提示词注入攻击是指攻击者通过精心设计和构造提示词,利用AIGC模型对输入文本的处理机制,干扰模型的正常运
- 通义WebSailor:开启网络智能体新时代
云资源服务商
人工智能ai
引言:WebSailor的横空出世在人工智能技术迅猛发展的当下,新的模型和智能体不断涌现,一次次刷新着人们对AI能力的认知。2024年7月7日,阿里云的一则消息犹如一颗重磅炸弹投入AI领域的湖面,激起千层浪——通义正式开源网络智能体WebSailor。这一开源举措,瞬间吸引了全球AI开发者、研究者以及科技爱好者的目光,在业界引发了强烈震动。一时间,技术论坛、社交媒体上关于WebSailor的讨论铺
- 大语言模型与增强现实:空间计算时代的AI原生应用
Agentic AI人工智能与大数据
CS语言模型ar空间计算ai
大语言模型与增强现实:空间计算时代的AI原生应用关键词:大语言模型(LLM)、增强现实(AR)、空间计算、AI原生应用、多模态交互、具身智能、虚实融合摘要:当“能对话的AI大脑”(大语言模型)遇到“能叠加虚拟世界的魔法眼镜”(增强现实),一场空间计算时代的革命正在发生。本文将带你一步步拆解大语言模型与AR的“强强联合”:从基础概念到技术原理,从真实案例到未来趋势,用“给小学生讲故事”的方式,讲清这
- AI人工智能浪潮中,GPT的技术优势凸显
AI学长带你学AI
人工智能gptai
AI人工智能浪潮中,GPT的技术优势凸显关键词:人工智能、GPT、自然语言处理、深度学习、Transformer、大语言模型、技术优势摘要:本文深入探讨了在人工智能浪潮中GPT(GenerativePre-trainedTransformer)系列模型的技术优势。我们将从GPT的核心架构出发,分析其独特的技术特点,包括自注意力机制、预训练-微调范式、零样本学习能力等。通过与传统NLP方法的对比,揭
- Kimi 大模型支持 Tool Calling 功能,并入驻字节「扣子Coze」开发平台!
铃灵狗
新闻人工智能
Kimi大模型API支持ToolCalling功能Kimi大模型学会「使用工具」了,API已支持ToolCalling功能。开发者们在打造自己的AIAgents时,可以让Kimi大模型与丰富的自定义外部工具进行交互,打开AI应用更大的想象空间。例如,在对话中,当用户问到一家公司的地址时,Kimi大模型可以调用地图工具,直观地展示这家公司在地图上的具体位置和交通路线;如果用户想要把文稿做成演示文稿,
- 【Arduino 动手做】由操纵杆控制的 SCARA 机械臂
驴友花雕
Arduino动手做嵌入式硬件单片机c++Arduino动手做由操纵杆控制的SCARA机械臂
《Arduino手册(思路与案例)》栏目介绍:在电子制作与智能控制的应用领域,本栏目涵盖了丰富的内容,包括但不限于以下主题:ArduinoBLDC、ArduinoCNC、ArduinoE-Ink、ArduinoESP32SPP、ArduinoFreeRTOS、ArduinoFOC、ArduinoGRBL、ArduinoHTTP、ArduinoHUB75、ArduinoIoTCloud、Arduin
- 【Arduino 动手做】DIY Arduino 机器人手臂,带智能手机控制
驴友花雕
Arduino动手做机器人智能手机嵌入式硬件单片机c++机器人手臂带智能手机控制Arduino动手做
《Arduino手册(思路与案例)》栏目介绍:在电子制作与智能控制的应用领域,本栏目涵盖了丰富的内容,包括但不限于以下主题:ArduinoBLDC、ArduinoCNC、ArduinoE-Ink、ArduinoESP32SPP、ArduinoFreeRTOS、ArduinoFOC、ArduinoGRBL、ArduinoHTTP、ArduinoHUB75、ArduinoIoTCloud、Arduin
- Spring AI深度解析(7/50):Tool Calling 工具调用解析
Spring AI学习
spring人工智能microsoft
SpringAI深度解析(7/50):ToolCalling工具调用解析一、工具调用的本质突破传统大模型存在两大核心限制:知识时效性与动作执行能力。SpringAI通过工具调用(ToolCalling)机制,将大模型从「信息处理中心」升级为「智能调度中枢」,实现三大飞跃:实时数据获取:连接数据库、API等动态数据源物理世界交互:触发硬件设备、业务流程复杂逻辑编排:多工具链式调用与结果聚合二、Spr
- 大语言模型的具身化——LLM-based Agents实战
apollowin123
人工智能语言模型深度学习
1.概述1.1Agent是什么长期以来,研究者们一直在追求与人类相当、乃至超越人类水平的通用人工智能(ArtificialGeneralIntelligence,AGI)。早在1950年代,AlanTuring就将「智能」的概念扩展到了人工实体,并提出了著名的图灵测试。这些人工智能实体通常被称为——代理(Agent)。「代理」这一概念起源于哲学,描述了一种拥有欲望、信念、意图以及采取行动能力的实体
- AI原生应用:多模态交互技术的5大核心应用场景解析
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络AI-nativeai
#AI原生应用:多模态交互技术的5大核心应用场景解析>关键词:多模态交互、AI原生应用、人机交互、深度学习、应用场景>摘要:本文将深入解析多模态交互技术的核心原理,通过智能家居、医疗诊断、自动驾驶、教育创新和虚拟助手五大应用场景,揭示AI如何像人类感官协同工作般理解世界。文章包含技术原理图解、真实案例代码和未来趋势预测。##背景介绍###目的和范围解析多模态交互技术在AI原生应用中的落地实践,涵盖
- 专知智库数据场景生态:开启全球数字文明新纪元——数据零件×场景编码×SEI指数构建下一代数字经济基座
人形机器人专利池研究中心
数据场景架构师数据零件架构师数据场景生态人工智能数据场景架构师算法大数据
一、传统数字经济的“柏林墙困境”全球产业痛点扫描:数据孤岛化:企业间数据流通成本高达交易额37%(麦肯锡2024)价值黑箱化:85%数据资产无法量化定价(普华永道审计报告)技术碎片化:同类算法重复开发年耗$1800亿破局宣言:专知智库提出“可拆解、可组合、可交易”三可原则,以数据零件+场景编码+SEI计量重构全球数字基础设施二、三大基座:数字经济的新操作系统1.数据零件(DP):技术场景最小单元革
- 10.5 实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力机器学习深度学习人工智能语言模型
实战ChatGLM3私有数据微调之提示工程:批量生成数据稳定性秘籍在当今人工智能蓬勃发展的时代,大语言模型(LLMs)如ChatGLM3的出现,为自然语言处理领域带来了革命性的变化。企业和开发者们纷纷寻求利用这些强大的模型来构建定制化的应用,以满足特定业务需求。其中,使用私有数据对ChatGLM3进行微调,成为了实现差异化竞争和提供个性化服务的关键途径。然而,在微调过程中,确保批量生成数据的稳定性
- 语言大模型综述
Paper:ASurveyofLargelanguageModels目录Paper:ASurveyofLargelanguageModels综述概要LLM关键技术规模定律(ScalingLaws)预训练与微调对齐调优(AlignmentTuning)外部工具集成GPT系列模型的技术演进模型检查点和APIPre-Training数据准备和处理数据准备数据预处理数据调度架构EmergentArchit
- 【机器学习笔记 Ⅱ】7 多类分类
巴伦是只猫
机器学习机器学习笔记分类
1.多类分类(Multi-classClassification)定义多类分类是指目标变量(标签)有超过两个类别的分类任务。例如:手写数字识别:10个类别(0~9)。图像分类:区分猫、狗、鸟等。新闻主题分类:政治、经济、体育等。特点互斥性:每个样本仅属于一个类别(区别于多标签分类)。输出要求:模型需输出每个类别的概率分布,且概率之和为1。实现方式One-vs-Rest(OvR):训练K个二分类器(
- 【附源码】基于flask框架求职招聘网站 (python+mysql+论文)
本系统(程序+源码)带文档lw万字以上文末可获取本课题的源码和程序系统程序文件列表系统的选题背景和意义选题背景:随着互联网技术的飞速发展,网络求职招聘已经成为了现代人才市场的一大趋势。传统的求职招聘方式逐渐被线上平台所取代,这主要得益于网络平台的便捷性、实时性和广泛性。然而,现有的求职招聘网站虽然数量众多,但质量参差不齐,用户体验也各不相同。一些求职者和招聘者在面对海量信息时,往往会感到无所适从,
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo