- 【大模型开发】Megatron-LM 深度解析:原理、应用与代码实现
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习大模型开发HuggingFace大模型生态机器学习Megatron-LM并行训练大模型加速
以下内容将从Megatron-LM的基本原理、应用场景、以及其核心代码和实现逻辑三个方面进行深入剖析,并提供示例代码和详细的注释说明,帮助大家对Megatron-LM有一个较为全面的了解。所有内容基于Megatron-LM官方实现(GitHub:NVIDIA/Megatron-LM),并结合大规模模型训练的关键理念进行介绍。一、Megatron-LM简介Megatron-LM是由NVIDIA开源的
- ESP-IDF 双核任务调度及绑核
V.Code1024
ESP-IDFarm开发vscodec语言架构
1.任务调度基本原理在FreeRTOS中,任务调度是基于优先级的抢占式调度算法。简单来说,系统根据任务的优先级决定哪个任务会被执行。如果一个高优先级任务变为就绪状态,FreeRTOS会立刻抢占当前正在运行的任务,并将高优先级任务调度运行。基本概念:任务优先级:FreeRTOS的任务优先级范围从0到31,其中0表示最低优先级,31表示最高优先级。任务创建时会指定一个优先级,调度器会根据优先级决定哪个
- Typecho插件URLAuth实现CDN URL鉴权防盗刷
是刃小木啦~
个人博客的网站搭建人工智能Tyepcho网站开发
主要功能:URL鉴权机制:基于时间戳和密钥生成动态鉴权参数,确保链接在设定时间内有效,过期后自动失效。多平台兼容:支持多吉云、腾讯云、阿里云等CDN服务,配置灵活。防盗刷效果:未授权或参数错误的访问将返回403错误,且不计入CDN请求量。配置简单:通过插件后台设置密钥、鉴权范围及过期时间,无需修改源码。注意事项:不建议修改插件源码,可能导致严重问题。需了解URL鉴权的基本原理,避免误配置导致网站访
- 【深度学习】Adam(Adaptive Moment Estimation)优化算法
辰尘_星启
机器学习--深度学习深度学习算法人工智能Adampytorchpython
概述Adam算法结合了动量法(Momentum)和RMSProp的思想,能够自适应调整每个参数的学习率。通过动态调整每个参数的学习率,在非平稳目标(如深度神经网络的损失函数)中表现优异目录基本原理和公式笼统说明:为什么Adam算法可以帮助模型找到更好的参数基本概念动量(Momentum):跟踪梯度的指数衰减平均(一阶矩),加速收敛并减少震荡。自适应学习率:跟踪梯度平方的指数衰减平均(二阶矩),调整
- Pika 技术浅析(二):文本编码
爱研究的小牛
AIGC—视频AIGC—预处理AIGC—自然语言处理人工智能算法AIGC深度学习数据预处理
在Pika的视频生成过程中,文本编码是至关重要的一步,它将用户输入的自然语言文本转换为机器可以理解的向量表示。这一步骤不仅影响生成视频的质量,还决定了视频与文本描述的匹配度。1.基本原理1.1文本编码的目的文本编码的目的是将自然语言文本转换为机器可以理解的向量表示。这些向量需要捕捉文本的语义信息和语法结构,以便在后续的视频生成过程中,模型能够根据这些向量生成与文本描述高度匹配的视频内容。1.2Tr
- 磁共振成像的物理方法基础
supernova121
算法
磁共振的基本原理1.1原子核的自选角动量与自旋磁矩1.1.1在微观世界中,自旋与质量一样是所有微观粒子的基本属性。1.1.2当原子核质量数为奇数时,原子核自旋量子数取半整数。1.1.3当原子核质量数为偶数时,原子核自旋量子数取整数。1.1.4当质量数与原子序数均为偶数时,原子核自旋量子数为0,不能发生核磁共振现象当自旋量子数为半整数时,原子核能够产生更强的NMR信号,因为半整数自旋原子核具有向上和
- 【人工智能基础】生成模型:让数据“无中生有”的神奇魔法
roman_日积跬步-终至千里
#人工智能基础知识人工智能
文章目录一、生成模型的发展脉络二、生成模型的基本原理三、主要生成模型及其逻辑1、生成对抗网络(GAN)2、变分自编码器(VAE)3、扩散模型(DPM)4、基于能量的模型(EBM)5、正规化流(NF)四、生成模型对比分析五、生成模型的应用拓展一、生成模型的发展脉络在深度学习尚未兴起的时期,计算机视觉领域的传统图像生成算法主要依赖纹理合成和纹理映射等技术。这些算法基于手工设计的特征进行图像构建,然而,
- 超越经典:量子通信技术的发展与未来
Echo_Wish
人工智能前沿技术量子计算
超越经典:量子通信技术的发展与未来在信息化高速发展的今天,我们习惯于在网上轻松分享消息、转账与数据。然而,随着数据传输变得越来越普遍,信息安全的挑战也与日俱增。当传统加密手段逐渐面对量子计算威胁时,量子通信技术以其独特的物理特性成为保障信息安全的下一个革命性方案。今天,我想和大家聊聊量子通信技术的核心发展脉络及实际应用,并通过Python代码模拟其部分基本原理。虽然“量子”这个词听起来高深莫测,但
- wifi基本原理
日行一步
通信wifi
WIFI基本知识整理这里对wifi的802.11协议中比较常见的知识做一个基本的总结和整理,便于后续的学习。因为无线网络中涉及术语很多,并且许多协议都是用英文描述,所以有些地方翻译出来会有歧义,这种情况就直接英文来描述了。主要内容:一、基本概述二、实践基础三、一些原理四、补充五、其它一、基本概述============================1、有线和无线网络目前有线网络中最著名的是以太网
- 2025最新Transformer模型及深度学习前沿技术应用
weixin_贾
PythonMATLABpython深度学习MATLAB编程深度学习模型图神经网络自编码物理信息神经网络目标检测大语言模型
第一章、注意力(Attention)机制1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)3、注意力机制的主要类型:键值对注意力机制(Key-ValueAttention)、自注意力(Self-Attention)与多头注意
- 无人机遥控器扩频技术解析!
云卓SKYDROID
无人机人工智能云卓科技科普高科技
一、扩频技术基本原理扩频技术(SpreadSpectrum,SS)通过将信号的频谱扩展至远大于原始带宽进行传输,提升抗干扰性、隐蔽性和多用户能力。其核心原理包括:直接序列扩频(DSSS)利用高速伪随机码(PN码)调制基带信号,扩展频谱。接收端通过同步PN码解扩,恢复原始信号。优点:抗窄带干扰强,隐蔽性高;缺点:需高精度同步。跳频扩频(FHSS)信号载波频率按伪随机序列快速跳变。收发双方同步跳频图案
- 蓝牙技术学习:从基础到进阶路线图
byte轻骑兵
嵌入式智慧开发探索蓝牙技术探索与应用人工智能蓝牙
目录一、基础入门阶段1.1.蓝牙技术概述1.1.1.蓝牙技术的起源1.1.2.发展历程1.1.3.基本原理1.1.4.应用场景1.2.蓝牙版本与标准1.2.1.蓝牙版本1.2.2.主要特性概述1.2.3.蓝牙的类型1.2.4.蓝牙低功耗(BLE)与经典蓝牙(BR/EDR)的区别与联系1.3.蓝牙协议栈基础1.3.1.蓝牙协议栈的组成1.3.2.各层协议的作用和相互关系二、进阶学习阶段2.1.蓝牙设
- 想知道的都有!大模型的定义、基本架构、训练、经典代表、应用和挑战全解析
和老莫一起学AI
语言模型人工智能自然语言处理学习大模型ai转行
导读都2024年了,学习AI相关的人或多或少的听说过“大模型”。目前,大模型技术以其庞大的参数规模和卓越的性能,成为了推动行业进步的新引擎。本文将带您深入探索大模型的神秘世界,从其定义、基本原理、训练三步骤,到Prompt技术的巧妙应用,以及大模型在各行业的广泛应用和面临的挑战。无论您是AI领域的专业人士,还是对技术充满好奇的普通读者,本文都将为您提供一个全面、深入的大模型知识图谱。1、大模型的定
- 显式 GC 的使用:留与去,如何选择?
张彦峰ZYF
JVM相关知识总结jvm
目录一、什么是显式GC?(一)垃圾回收的基本原理(二)显式GC方法和行为1.System.gc()方法2.显式GC的行为(三)显式GC的使用场景与风险1.JVM如何处理显式GC2.显式GC的风险二、显式GC对性能的影响(一)全GC与STW1.FullGC是如何发生的?2.STW(Stop-the-World)现象3.FullGC的性能开销(二)对DirectByteBuffer的影响1.Direc
- 目标检测YOLO实战应用案例100讲-TDI线阵相机
林聪木
数码相机计算机视觉人工智能
目录知识储备图像基础知识分辨率单位及换算算法原理一、TDI基本原理二、信噪比提升机制三、时间同步机制四、TDIvs传统线扫描技术五、TDI的技术挑战六、最新的TDI技术发展知识储备图像基础知识首先什么是机器视觉?计算机视觉就是让计算机去理解获取数字图像与视频中的信息。最终实现一个与人类视觉系统实现相同功能的自动化系统。什么是机器视觉中的图像的前置知识——颜色模型?最为常用的颜色模型,分别是RGB颜
- 双目立体视觉(6.1)测距
2501_90596733
双目立体视觉计算机视觉人工智能opencv
在计算机视觉领域,双目相机测距是一项关键技术,它通过模拟人类双眼的视觉机制,利用两个相机从不同角度拍摄同一场景,进而计算出物体的深度信息。一、双目测距的基本原理1.1视差图(DisparityMap)视差图是一种存储了单视图所有像素的视差值的二维图像。视差值是同一物体在左右两幅图像中的列坐标差,即通过比较左右两幅图像的对应像素差异来计算物体的深度信息。视差图是以图像对中任一幅图像为基准生成的,其大
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 数据结构之旅:自己动手实现顺序表
GeminiGlory
数据结构数据结构
目录1.引言顺序表(ArrayList)的概念及其在编程中的重要性。为什么选择自己实现而不是直接使用Java库中的ArrayList。2.基本原理3.类定义与属性MyArrayList类的定义4.核心方法5.错误处理与边界情况6.结论1.引言顺序表(ArrayList)的概念及其在编程中的重要性。顺序表(ArrayList)是一种动态数组,能够根据需要自动调整大小,支持高效的随机访问和顺序存储。它
- Zookeeper01-文件存储的困境
aqzengkuasheng
大数据zookeeper大数据
磁盘阵列Raid条带化raid0:效率高,安全性低,磁盘率用率高radi1:安全性,效率高,磁盘利用率低radi2:纠错码模式,可以进行纠错,但是纠错需要多余的磁盘raid3:专门有一块校验盘,但是校验盘工作繁忙,有可能成为瓶颈,但是如果有一块盘坏了,可以恢复raid4:基本原理和3相同,但是数据存储方式和3不同raid5:将校验数据存放不同的磁盘上面raid6:双重校验,允许坏两块
- 【MATLAB源码-第128期】基于matlab的雷达系统回波信号仿真,输出脉压,MTI,MTD等图像。
Matlab_猿助手
调制解调通信原理MATLABmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述雷达(RadioDetectionandRanging)是一种使用无线电波来探测和定位物体的系统。它的基本原理是发射无线电波,然后接收这些波从目标物体上反射回来的信号。通过分析这些反射波,雷达能够确定物体的位置、速度、方向和其他特性。历史背景雷达技术起源于20世纪初。最初的发展动机主要是军事上的需求,特别是在第二次世界大战期间,雷达在侦测敌机和舰船上发挥
- 大模型驱动的智能代码生成系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型驱动的智能代码生成系统关键词大模型智能代码生成自然语言处理计算机视觉系统设计与实现摘要本文深入探讨了基于大模型的智能代码生成系统的构建与实现。首先,我们分析了智能代码生成的背景与意义,随后介绍了大模型的基本原理及其在代码生成中的潜力。接着,我们详细阐述了智能代码生成系统的设计与实现过程,包括系统需求分析、架构设计、模型集成与优化等方面。随后,本文通过自然语言处理、计算机视觉和代码生成应用,展
- 深入浅出地理解-随机森林与XGBoost模型
HP-Succinum
机器学习随机森林集成学习机器学习
目录一、决策树的不足与集成学习的优势1.1决策树的缺点1.2集成学习:通过集成多个模型提升稳定性二、随机森林:通过多棵决策树减少方差2.1随机森林的基本原理2.2随机森林的优势2.3随机森林的参数调整三、XGBoost:高效且强大的Boosting方法3.1Boosting的基本原理3.2XGBoost的优化3.3XGBoost的优点四、随机森林与XGBoost的对比五、总结在机器学习的实战中,决
- 芯片为什么需要初始引导程序?——ROM的作用、机制与实现
嵌入式Jerry
嵌入式硬件嵌入式硬件服务器linux人工智能运维
1.前言当一个CPU上电时,它该如何确定自己需要执行什么代码?我们所知道的操作系统实际上就是一段进阶的代码,它必须从一个已经处于可执行状态的代码开始。这就是初始引导程序的作用,它确保CPU能够正确从对应的存储设备加载后续进程。在不同系统中,初始引导程序的定位方式和优先级结构不同,但基本原理是相通的。本文将以ROM为核心,详细解释初始引导程序在各种芯片中的作用和实现方式。2.什么是ROM?为什么芯片
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- 1.3爬虫的基本原理
走在考研路上
爬虫爬虫
1.3爬虫的基本原理若是把互联网比作一张大网,爬虫便是在网上爬行的蜘蛛。不同的网页即是网上不同的节点,蜘蛛爬到一个节点处就相当于爬虫访问了一个页面,获取了其信息。可以把网页与网页之间的链接关系比作节点间的连线,蜘蛛通过一个节点后,顺着节点连线继续爬行,到达下一个节点,意味着爬虫可以通过网页之间的链接关系继续获取后续的网页,当整个网站涉及到的页面全部被爬虫访问到后,网站的数据就被抓取下来了。1.爬虫
- 爬虫初学24-11-21
走在考研路上
爬虫爬虫
第一章爬虫基础——写爬虫前要了解的一些基础知识1.1HTTP基本原理1.URI和URLURI的全称为UniformResourceIdentifier——统一资源标识符;URL的全称为UniversalResourceLocator——统一资源定位符示例:https://github.com/favicon.ico既是一个URI,也是一个URL。既有favicon.ico这样一个图标资源,我们用U
- 词向量(Word Embedding)
呵呵,不解释868
easyui前端javascript
词向量(WordEmbedding)是一种将自然语言中的单词映射到连续的向量空间的技术,使得语义相似的单词在向量空间中彼此接近。这种技术是现代自然语言处理(NLP)任务的基础之一,广泛应用于文本分类、机器翻译、问答系统等。###一、词向量的基本原理####1.离散表示vs连续表示传统的自然语言处理方法通常使用离散表示(如one-hot编码)来表示单词。然而,这种方法存在以下问题:-**维度灾难**
- 深度学习算法模型:从原理到未来
YDH_AlwaysRunning
深度学习
近年来,人工智能(AI)技术以前所未有的速度改变着人类生活,而深度学习的崛起无疑是这场技术革命的核心驱动力。从手机中的语音助手到医学影像的智能诊断,从自动驾驶汽车到生成式AI创作的诗歌和画作,深度学习算法模型正逐渐渗透到社会的每个角落。本文将从基本原理出发,解析典型模型的运作机制,探讨其应用现状与发展趋势,带您全面认识这一改变世界的技术。一、深度学习的基本原理:让机器学会"思考"1.1神经网络的生
- IP地址伪造和反伪造技术
ipip地址ip伪造
IP地址伪造简而言之就是网络攻击的一种手段。攻击者通过伪装成合法的IP地址,绕过访问控制、进行恶意攻击或窃取敏感信息。IP地址伪造的基本原理主要是攻击者通过修改数据包中的源IP地址字段,使其显示为其他合法或非法的IP地址。在TCP/IP协议栈中,IP层负责数据包的传输和路由选择,而对于源IP地址的真实性验证就是相对较弱。有哪些IP地址常见的伪造手段?这里主要有两种,分别是基于原始套接字的伪造和利用
- 分布式系统必备:使用 Redis 实现分布式锁的实战指南
全栈探索者chen
redisredis分布式数据库深度学习数据分析性能优化安全
分布式系统必备:使用Redis实现分布式锁的实战指南前言在分布式系统中,协调多个服务实例对共享资源的访问是一个常见且棘手的问题。分布式锁作为一种确保同一时刻只有一个客户端能访问共享资源的机制,对于避免数据竞争、保持数据一致性至关重要。Redis作为一种高性能的内存数据存储,不仅支持丰富的数据结构,而且提供了原子操作,使其成为实现分布式锁的理想选择。本文将详细介绍分布式锁的基本原理、Redis实现方
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_