- 一种非接触式智能垃圾桶设计(论文+源码+实物)
云山工作室
单片机智能家居嵌入式硬件毕业设计毕设
1系统方案设计通过对需求展开分析,本设计非接触式智能垃圾桶采用STM32F103单片机作为控制器,通过红外传感器实现垃圾桶的满溢检测,通过三个SG90舵机分别控制可回收、不可回收、其他垃圾桶盖的开关,并通过WiFi通信模块将数据信息传输到云平台,方便用户实现远程管控,在控制方式上有自动和手动两种模式,自动模式下,用户可以通过LU-ASR01语音识别模块以语音的方式对垃圾桶进行控制,手动模式下,则用
- 开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B与vllm实现推理加速的正确姿势(一)
开源技术探险家
开源模型-实际应用落地#人工智能自然语言处理语言模型深度学习
一、前言在当今人工智能技术迅猛发展的时代,各类人工智能模型如雨后春笋般不断涌现,其性能的优劣直接影响着应用的广度与深度。从自然语言处理到计算机视觉,从智能安防到医疗诊断,AI模型广泛应用于各个领域,人们对其准确性、稳定性和高效性的期望也与日俱增。在此背景下,DeepSeek模型的出现为行业带来了新的曙光。DeepSeek团队开发的DeepSeek-R1-Distill-Qwen-7B模型,利用蒸馏
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- 探索2025年的编程新趋势:技术、工具与未来展望
桂月二二
wasm人工智能前端
随着2025年的到来,编程技术领域依旧在高速发展。一些新兴的技术方向、工具和方法正在悄然改变开发者的日常实践。如果您是一名开发者,无论是资深还是初入门道,跟上这些趋势将让您的技能保持前沿,并为职业发展打下坚实基础。本文将从多个维度深入探讨当前最值得关注的编程技术,希望为您的技术提升带来启发。一、AI驱动的编程辅助工具人工智能已成为程序开发的重要组成部分。以下是几款2025年值得关注的AI驱动编程工
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 缓存增强生成(CAG)对比检索增强生成(RAG):谁才是大语言模型的最优解?
人工智能
缓存增强生成(CAG)对比检索增强生成(RAG):谁才是大语言模型的最优解?1.前期准备:RAG与KV-Cache(CAG)RAG是什么RAG是一种检索增强生成方法,它利用检索器查找相关文档,然后将这些文档传递给大语言模型,以生成最终答案。优势处理大型或频繁更新的数据集时,无需一次性加载全部内容。避免了大量提示信息导致的截断或上下文过载问题。关键局限增加了检索步骤,可能会导致速度变慢。通常依赖外部
- 基于BiGRU的预测模型及其Python和MATLAB实现
追蜻蜓追累了
机器学习深度学习cnnlstm神经网络gru回归算法
##一、背景在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。传统的机器学习算法往往无法很好地捕捉数据中的时序信息和上下文关系,因此深度学习中的循环神经网络(RNN)逐渐成为解决这一问题的重要工具。RNN能够处理序列数据,但它们在长序列数据的学习中存在梯度消失和梯度爆炸的问题。为了解决这些问题,长短期记忆网络(LS
- 【自我修炼】 大疆技术总监对于大学生学习机器人工程师路线建议 ( 大一 篇)
2401_89323952
学习机器人
很多朋友私信问我对机器人和人工智能感兴趣,该怎么展开学习。最近稍微有点空,我写写我的看法。两年前,我在知乎回答如何定义「机器人」?YY硕的回答中试图给机器人做出一个比较仔细的定义,我觉得机器人和人工智能最大的区别在于是否要和物理世界进行交互。今年初在另一篇知乎回答里对机器人或人工智能的研究会帮助我们更好的了解人类自己吗?-YY硕的回答我说到传感器是和物理世界交互的基础。后来,我又在知乎回答有哪些与
- 【C++】C++回调函数基本用法(详细讲解)
米码收割机
C/C++c++php开发语言
博__主:米码收割机技__能:C++/Python语言公众号:测试开发自动化【获取源码+商业合作】荣__誉:阿里云博客专家博主、51CTO技术博主专__注:专注主流机器人、人工智能等相关领域的开发、测试技术。一文详解C++回调函数目录一文详解C++回调函数1.什么是回调函数?2.为什么需要回调函数3.回调函数的应用场合4.举例说明5.高级回调方式1.什么是回调函数?回调函数可以被简单地理解为:A函
- DeepSeek 详细使用教程
神探阿航
计算机产业科普与思考大模型人工智能
1.简介DeepSeek是一款基于人工智能技术的多功能工具,旨在帮助用户高效处理和分析数据、生成内容、解答问题、进行语言翻译等。无论是学术研究、商业分析还是日常使用,DeepSeek都能提供强大的支持。本教程将详细介绍DeepSeek的各项功能及使用方法。2.注册与登录注册:访问DeepSeek官网(https://www.deepseek.com)。点击“注册”按钮。填写邮箱地址、设置密码,并完
- 人工智能第2章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解释的含义。介绍谓词公式表示知识的一般步骤,阐述谓词逻辑表示知识的优点与局限性。什么是知识表示的产生式,请详细阐释产生式和谓词逻辑蕴涵式的差异。什么是产生式系统,请详细阐述产生式系统
- 微软推出GRIN-MoE:开创专家路由新范式
OpenCSG
microsoft
前沿科技速递在人工智能领域,模型的性能和可扩展性一直是研究的热点。微软最近推出的GRIN-MoE(Gradient-InformedMixture-of-Experts)模型,以其独特的架构和显著的性能表现,正引领着AI技术的前沿,特别是在编码和数学任务上展现出强大的能力。GRIN-MoE的发布标志着企业级应用中AI技术的又一次飞跃,旨在提升处理复杂任务的效率和准确性。来源:传神社区01模型简介G
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- Qwen2.5-Max
百态老人
笔记大数据人工智能
Qwen2.5-Max是阿里巴巴于2024年1月29日发布的一款旗舰级人工智能模型,基于混合专家(MoE)架构开发,拥有超过20万亿tokens的超大规模预训练数据。这一模型在多项权威基准测试中展现了卓越的性能,超越了包括DeepSeekV3、GPT-4和Claude-3.5-Sonnet在内的多款国际顶尖AI模型,标志着中国AI技术在高性能、低成本路线上的重大突破。技术特点与优势超大规模预训练数
- ChatGPT-4o和ChatGPT-4o mini的差异点
老六哥_AI助理指南
人工智能chatgpt
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4oMini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式,深入解析两者之间的不同点。一、性能差异ChatGPT-4o:全能型语言模型多模态处理能力:ChatGPT-4o不仅限于文本处理,更能够实时处理和生
- 第一章: AIGC概述
野老杂谈
AIGC时代的创新与未来AIGC大模型人工智能神经网络
1.AIGC的定义与历史1.1什么是AIGC?AIGC,全称为人工智能生成内容(ArtificialIntelligenceGeneratedContent),是一种利用人工智能技术来自动生成各种类型内容的方式。这些内容包括文字、图像、音频和视频等。简单来说,就是让计算机像人一样创作。例如,AI可以生成一篇文章、一幅画、一段音乐,甚至是一部短视频。AIGC是如何运作的?AIGC的核心技术包括机器学
- Ubuntu16.04环境下安装cuda10+pytorch1.2
小楼昨夜,东风
pytorch深度学习神经网络
1、背景环境:Ubuntu16.04&titanx作为新一代的人工智能训练平台的PYTORCH,有其独特的优势,为此,完整的安装这一平台,是开展所有工作的首要条件,一开始,笔者认为应该轻松的完成,但是发现实际上要从零完成这一工作,尤其是在NVIDIATITANX下,是需要3~4天的摸索的,为了便于后续的工作,也为了后面使用的童鞋,写下这篇文章,闲话少说,先上最终完成shell输出。xxx@xxxU
- 深度学习盛行,还记得哪些传统机器学习方法和模型?
硬件学长森哥
人工智能深度学习机器学习人工智能
开头森哥说:假期前后在准备成像技术的总结,目前已完成两部分,争取在摸索出一些编辑和运营技巧后,完善成一个系列和大家见面;当然也有可能会通过一些更加贴合摄影实用的角度出一些更加浅显的内容。最终如何呈现还需要慢慢摸索。传统机器学习是指在深度学习盛行之前开发的机器学习和人工智能技术。这些传统方法通常依赖于手工设计的特征提取和模型结构。而深度学习是一种机器学习技术,它通过深层神经网络从原始数据中学习特征表
- 探索自然语言处理的前沿:使用OpenAI API进行文本分析
qq_37836323
自然语言处理easyui人工智能python
#引言自然语言处理(NLP)是人工智能领域中最令人兴奋和快速发展的部分之一。本文将介绍如何使用OpenAI的API进行文本分析。我们将通过代码示例,深入探讨如何利用这些工具来提升应用程序的智能和功能。#主要内容##什么是OpenAIAPI?OpenAIAPI提供了强大的自然语言处理能力,能够帮助开发者在自己的应用中集成先进的语言模型。这些模型可以用于文本生成、情感分析、翻译等多种任务。##使用AP
- 【PyTorch】6.张量运算函数:一键开启!PyTorch 张量函数的宝藏工厂
Icomi_
805.Pytorch入门pytorch人工智能pythonc语言c++深度学习机器学习
目录1.常见运算函数个人主页:Icomi专栏地址:PyTorch入门在深度学习蓬勃发展的当下,PyTorch是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进PyTorch的世界,探索神经网络与人
- 语音识别播报人工智能分类垃圾桶(论文+源码)
沐欣工作室_lvyiyi
人工智能语音识别毕业设计PLC单片机单片机毕业设计
2.1需求分析本次语音识别播报人工智能分类垃圾桶,设计功能要求如下∶1、具有四种垃圾桶,分别为用来回收厨余垃圾,有害垃圾,可回收垃圾,其他垃圾。2、当用户语音说出“旧报纸”,“剩菜”等特定词语时,系统可以通过语音识别模块准确检测出该垃圾属于何种类型,。3、根据检测出的垃圾类型,系统通过舵机自动打开相应的垃圾桶,并通过语音播报模块提醒用户。2.2系统整体设计针对分成需求,设计了如图2.1所示的整体系
- 《语音识别模式、算法设计与实践》——第一章 语音识别概述
静候光阴
语音识别语音识别人工智能python
专栏总目录1.1走进语音识别1.1.1语音识别的定义定义:语音识别是让机器具备自动接收和分析人类的语音,并最终输出对应文本的过程。目标:将输入语音转化为文字的输出目标实现条件:提前规定好该系统可以接收的语音输入形式,比如单个词、命令短语和连续语音。对应的文本输出形式,可以直接翻译出来的对应文本,也可以是经过编码的特殊字符,比如组成发音的基本单位——音素。由此可知,系统的输入和输出不同,决定了语音识
- 《AI逆袭:科技与人类的终极对决,谁才是未来的主宰?》
云边有个稻草人
热门文章人工智能科技
目录第一章:人工智能的崛起1.1AI技术的基础与发展1.2AI的技术分支1.3AI的应用领域第二章:AI与人类的关系2.1AI对就业的影响2.2AI与伦理问题2.3AI与创意的结合第三章:AI的未来:谁才是主宰?3.1AI与人类的合作3.2AI的自主性与未来3.3AI与社会的融合第四章:AI技术实践——代码示例4.1图像分类(使用TensorFlow)结语导语人工智能(AI)无疑是当前科技发展的热
- 机器学习—大语言模型:推动AI新时代的引擎
云边有个稻草人
人工智能机器学习语言模型
云边有个稻草人-CSDN博客目录引言一、大语言模型的基本原理1.什么是大语言模型?2.Transformer架构3.模型训练二、大语言模型的应用场景1.文本生成2.问答系统3.编码助手4.多语言翻译三、大语言模型的最新进展1.GPT-42.开源模型四、构建和部署一个简单的大语言模型1.数据准备2.模型训练3.部署模型五、大语言模型的未来发展结语引言大语言模型(LargeLanguageModels
- DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
davenian
评论语言模型人工智能深度学习DeepSeek
论文链接:[2501.12948]DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning实在太长,自行扔到Model里,去翻译去提问吧。工作原理:主要技术,就是训练出一些专有用途小模型,来帮助大模型训练。主要技术:1.强化学习(RL)核心是强化学习技术,像训练小狗一样,当模型做出正确的推理步骤或得到正确的
- 自然语言编程:用 Cursor 将需求转化为代码
drebander
AI编程Cursor
引言在传统编程中,开发者需要精确掌握语法规则、API接口和框架特性才能实现功能需求。然而,随着人工智能技术的发展,以自然语言交互为核心的编程方式正在颠覆这一流程。Cursor作为一款智能编程助手,通过其自然语言编程功能,允许开发者直接通过文本描述生成代码,将模糊的需求快速转化为可执行的程序。本文将深入探讨Cursor的自然语言交互能力,并通过实际案例(如生成React组件、Python脚本等),展
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置