微服务调用链路中的某个服务故障,引起链路中的所有微服务都不可用,这就是雪崩。
超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待。
缓解了问题,未解决问题。当请求速度快于释放速度时会雪崩。
我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。
限制业务访问的QPS,避免服务因流量的突增而故障
预防因高并发出现的故障
什么是雪崩问题?
微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。
可以认为:
限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。
超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。
在SpringCloud当中支持多种服务保护技术:
Netfix Hystrix
Sentinel
Resilience4J
早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:
Sentinel | Hystrix | |
---|---|---|
隔离策略 | 信号量隔离 | 线程池隔离/信号量隔离 |
熔断降级策略 | 基于慢调用比例或异常比例 | 基于失败比率 |
实时指标实现 | 滑动窗口 | 滑动窗口(基于 RxJava) |
规则配置 | 支持多种数据源 | 支持多种数据源 |
扩展性 | 多个扩展点 | 插件的形式 |
基于注解的支持 | 支持 | 支持 |
限流 | 基于 QPS,支持基于调用关系的限流 | 有限的支持 |
流量整形 | 支持慢启动、匀速排队模式 | 不支持 |
系统自适应保护 | 支持 | 不支持 |
控制台 | 开箱即用,可配置规则、查看秒级监控、机器发现等 | 不完善 |
常见框架的适配 | Servlet、Spring Cloud、Dubbo、gRPC 等 | Servlet、Spring Cloud Netflix |
Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:home | Sentinel
Sentinel 具有以下特征:
•丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
•完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
•广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
•完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:
1)引入sentinel依赖
com.alibaba.cloud
spring-cloud-starter-alibaba-sentinel
2)配置控制台
修改application.yaml文件,添加下面内容:
server:
port: 8088
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8080
3)访问order-service的任意端点
打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。
然后再访问sentinel的控制台,查看效果:
当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源。
默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。
例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}
流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:
流控:流量控制
降级:降级熔断
热点:热点参数限流,是限流的一种
授权:请求的权限控制
需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。
在添加限流规则时,点击高级选项,可以选择三种流控模式:
直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流
关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。
需求说明:
在OrderController新建两个端点:/order/query和/order/update,无需实现业务
配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流
1)定义/order/query端点,模拟订单查询
@GetMapping("/query")
public String queryOrder() {
return "查询订单成功";
}
2)定义/order/update端点,模拟订单更新
@GetMapping("/update")
public String updateOrder() {
return "更新订单成功";
}
重启服务,查看sentinel控制台的簇点链路:
3)配置流控规则
对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:
在表单中填写流控规则:
链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
配置示例:
例如有两条请求链路:
/test1 --> /common
/test2 --> /common
如果只希望统计从/test2进入到/common的请求,则可以这样配置:
实战案例
需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。
步骤:
在OrderService中添加一个queryGoods方法,不用实现业务
在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2
默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。
给OrderService的queryGoods方法添加@SentinelResource注解:
@SentinelResource("goods")
public void queryGoods(){
System.err.println("查询商品");
}
链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。
我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:
spring:
cloud:
sentinel:
web-context-unify: false # 关闭context整合
重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源
/order/save 不受影响,/order/query 受影响
流控效果是指请求达到流控阈值时应该采取的措施,包括三种:
快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长
阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。
warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.
例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.
排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。
工作原理
例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。
那什么叫做预期等待时长呢?
比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:
第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
第12个请求的预期等待时长 = 200 * (12-1) = 2200ms
用固定的时间处理每一个请求,让QPS曲线平滑,对于服务器来说是更友好的
刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.
而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:
•如果参数值是100,则每1秒允许的QPS为10
•如果参数值是101,则每1秒允许的QPS为15
SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。
修改OrderService的application.yml文件,开启Feign的Sentinel功能:
feign:
sentinel:
enabled: true # 开启feign对sentinel的支持
业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。
给FeignClient编写失败后的降级逻辑
①方式一:FallbackClass,无法对远程调用的异常做处理
②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种
这里我们使用方式二的失败降级处理。
步骤一:在feing-api项目中定义类,实现FallbackFactory:
package cn.itcast.feign.clients.fallback;
import cn.itcast.feign.clients.UserClient;
import cn.itcast.feign.pojo.User;
import feign.hystrix.FallbackFactory;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory {
@Override
public UserClient create(Throwable throwable) {
return new UserClient() {
@Override
public User findById(Long id) {
log.error("查询用户异常", throwable);
return new User();
}
};
}
}
步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:
@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
return new UserClientFallbackFactory();
}
步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:
import cn.itcast.feign.clients.fallback.UserClientFallbackFactory;
import cn.itcast.feign.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {
@GetMapping("/user/{id}")
User findById(@PathVariable("id") Long id);
}
Sentinel支持的雪崩解决方案:
线程隔离(仓壁模式)
降级熔断
Feign整合Sentinel的步骤:
在application.yml中配置:feign.sentienl.enable=true
给FeignClient编写FallbackFactory并注册为Bean
将FallbackFactory配置到FeignClient
线程隔离有两种方式实现:
线程池隔离
信号量隔离(Sentinel默认采用)
线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果
信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。
熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。
断路器控制熔断和放行是通过状态机来完成的:
状态机包括三个状态:
closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
请求成功:则切换到closed状态
请求失败:则切换到open状态
断路器熔断策略有三种:慢调用、异常比例、异常数
慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。
例如:
解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。
异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。
例如,一个异常比例设置:
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。
一个异常数设置:
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。
授权规则可以对请求方来源做判断和控制。
授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。
白名单:来源(origin)在白名单内的调用者允许访问
黑名单:来源(origin)在黑名单内的调用者不允许访问
点击左侧菜单的授权,可以看到授权规则:
资源名:就是受保护的资源,例如/order/{orderId}
流控应用:是来源者的名单,
如果是勾选白名单,则名单中的来源被许可访问。
如果是勾选黑名单,则名单中的来源被禁止访问。
比如:
我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)。
Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。
public interface RequestOriginParser {
/**
* 从请求request对象中获取origin,获取方式自定义
*/
String parseOrigin(HttpServletRequest request);
}
这个方法的作用就是从request对象中,获取请求者的origin值并返回。
默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。
因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin。
例如order-service服务中,我们定义一个RequestOriginParser的实现类:
package cn.itcast.order.sentinel;
import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import javax.servlet.http.HttpServletRequest;
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
// 1.获取请求头
String origin = request.getHeader("origin");
// 2.非空判断
if (StringUtils.isEmpty(origin)) {
origin = "blank";
}
return origin;
}
}
我们会尝试从request-header中获取origin值。
既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头。
这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。
修改gateway服务中的application.yml,添加一个defaultFilter:
spring:
cloud:
gateway:
default-filters:
- AddRequestHeader=origin,gateway
routes:
# ...略
这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。
默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。
而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:
public interface BlockExceptionHandler {
/**
* 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
*/
void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}
这个方法有三个参数:
HttpServletRequest request:request对象
HttpServletResponse response:response对象
BlockException e:被sentinel拦截时抛出的异常
这里的BlockException包含多个不同的子类:
异常 | 说明 |
---|---|
FlowException | 限流异常 |
ParamFlowException | 热点参数限流的异常 |
DegradeException | 降级异常 |
AuthorityException | 授权规则异常 |
SystemBlockException | 系统规则异常 |
下面,我们就在order-service定义一个自定义异常处理类:
package cn.itcast.order.sentinel;
import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
@Override
public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
String msg = "未知异常";
int status = 429;
if (e instanceof FlowException) {
msg = "请求被限流了";
} else if (e instanceof ParamFlowException) {
msg = "请求被热点参数限流";
} else if (e instanceof DegradeException) {
msg = "请求被降级了";
} else if (e instanceof AuthorityException) {
msg = "没有权限访问";
status = 401;
}
response.setContentType("application/json;charset=utf-8");
response.setStatus(status);
response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
}
}
重启测试,在不同场景下,会返回不同的异常消息.
规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:
原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
pull模式
push模式
pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。
分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:
跨数据源的分布式事务
跨服务的分布式事务
综合情况
在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:
创建新订单
扣减商品库存
从用户账户余额扣除金额
完成上面的操作需要访问三个不同的微服务和三个不同的数据库。
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。
但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。
此时ACID难以满足,这是分布式事务要解决的问题
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。
Consistency(一致性)
Availability(可用性)
Partition tolerance (分区容错性)
它们的第一个字母分别是 C、A、P。
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。
当节点接收到新的数据变更时,就会出现问题了:
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。
如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。
也就是说,在P一定会出现的情况下,A和C之间只能实现一个。
BASE理论是对CAP的一种解决思路,包含三个思想:
Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。
Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。
分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:
AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC):
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务。
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
官网地址:Apache Seata,其中的文档、播客中提供了大量的使用说明、源码分析。
Seata事务管理中有三个重要的角色:
TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
整体的架构如图:
Seata基于上述架构提供了四种不同的分布式事务解决方案:
XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
TCC模式:最终一致的分阶段事务模式,有业务侵入
AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
SAGA模式:长事务模式,有业务侵入
无论哪种方案,都离不开TC,也就是事务的协调者。
XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
一阶段:
事务协调者通知每个事物参与者执行本地事务
本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁
二阶段:
事务协调者基于一阶段的报告来判断下一步操作
如果一阶段都成功,则通知所有事务参与者,提交事务
如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM一阶段的工作:
① 注册分支事务到TC
② 执行分支业务sql但不提交
③ 报告执行状态到TC
TC二阶段的工作:
TC检测各分支事务执行状态
a.如果都成功,通知所有RM提交事务
b.如果有失败,通知所有RM回滚事务
RM二阶段的工作:
接收TC指令,提交或回滚事务
XA模式的优点是什么?
事务的强一致性,满足ACID原则。
常用数据库都支持,实现简单,并且没有代码侵入
XA模式的缺点是什么?
因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
依赖关系型数据库实现事务
1)修改application.yml文件(每个参与事务的微服务,包括调用者),开启XA模式:
seata:
data-source-proxy-mode: XA
2)给发起全局事务的入口方法添加@GlobalTransactional注解:
本例中是OrderServiceImpl中的create方法.
3)重启服务并测试
重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。
阶段一RM的工作:
注册分支事务
记录undo-log(数据快照)
执行业务sql并提交
报告事务状态
阶段二提交时RM的工作:
删除undo-log即可
阶段二回滚时RM的工作:
根据undo-log恢复数据到更新前
简述AT模式与XA模式最大的区别是什么?
XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
XA模式强一致;AT模式最终一致
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
AT模式的优点:
一阶段完成直接提交事务,释放数据库资源,性能比较好
利用全局锁实现读写隔离
没有代码侵入,框架自动完成回滚和提交
AT模式的缺点:
两阶段之间属于软状态,属于最终一致
框架的快照功能会影响性能,但比XA模式要好很多
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
1)导入数据库表,记录全局锁
导入课前资料提供的Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:
/*
Navicat Premium Data Transfer
Source Server : local
Source Server Type : MySQL
Source Server Version : 50622
Source Host : localhost:3306
Source Schema : seata_demo
Target Server Type : MySQL
Target Server Version : 50622
File Encoding : 65001
Date: 20/06/2021 12:39:03
*/
SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
-- ----------------------------
-- Table structure for undo_log
-- ----------------------------
DROP TABLE IF EXISTS `undo_log`;
CREATE TABLE `undo_log` (
`branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',
`xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',
`context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',
`rollback_info` longblob NOT NULL COMMENT 'rollback info',
`log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` datetime(6) NOT NULL COMMENT 'create datetime',
`log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',
UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;
-- ----------------------------
-- Records of undo_log
-- ----------------------------
-- ----------------------------
-- Table structure for lock_table
-- ----------------------------
DROP TABLE IF EXISTS `lock_table`;
CREATE TABLE `lock_table` (
`row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
`xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`transaction_id` bigint(20) NULL DEFAULT NULL,
`branch_id` bigint(20) NOT NULL,
`resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`gmt_create` datetime NULL DEFAULT NULL,
`gmt_modified` datetime NULL DEFAULT NULL,
PRIMARY KEY (`row_key`) USING BTREE,
INDEX `idx_branch_id`(`branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
SET FOREIGN_KEY_CHECKS = 1;
2)修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
3)重启服务并测试
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
Try:资源的检测和预留;
Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
Cancel:预留资源释放,可以理解为try的反向操作。
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。
阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30
确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
TCC模式的每个阶段是做什么的?
Try:资源检查和预留
Confirm:业务执行和提交
Cancel:预留资源的释放
TCC的优点是什么?
一阶段完成直接提交事务,释放数据库资源,性能好
相比AT模型,无需生成快照,无需使用全局锁,性能最强
不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库
TCC的缺点是什么?
有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
软状态,事务是最终一致
需要考虑Confirm和Cancel的失败情况,做好幂等处理
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
如图:
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂
解决空回滚和业务悬挂问题,必须要记录当前事务状态
这里我们定义一张表:
CREATE TABLE `account_freeze_tbl` (
`xid` varchar(128) NOT NULL,
`user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
`freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
`state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;
其中:
xid:是全局事务id
freeze_money:用来记录用户冻结金额
state:用来记录事务状态
那此时,我们的业务开怎么做呢?
Try业务:
记录冻结金额和事务状态到account_freeze表
扣减account表可用金额
Confirm业务
根据xid删除account_freeze表的冻结记录
Cancel业务
修改account_freeze表,冻结金额为0,state为2
修改account表,恢复可用金额
如何判断是否空回滚?
cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
如何避免业务悬挂?
try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务
接下来,我们改造account-service,利用TCC实现余额扣减功能。
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
我们在account-service项目中的cn.itcast.account.service
包中新建一个接口,声明TCC三个接口:
package cn.itcast.account.service;
import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;
@LocalTCC
public interface AccountTCCService {
@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
@BusinessActionContextParameter(paramName = "money")int money);
boolean confirm(BusinessActionContext ctx);
boolean cancel(BusinessActionContext ctx);
}
在account-service服务中的cn.itcast.account.service.impl
包下新建一个类,实现TCC业务:
package cn.itcast.account.service.impl;
import cn.itcast.account.entity.AccountFreeze;
import cn.itcast.account.mapper.AccountFreezeMapper;
import cn.itcast.account.mapper.AccountMapper;
import cn.itcast.account.service.AccountTCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
@Autowired
private AccountMapper accountMapper;
@Autowired
private AccountFreezeMapper freezeMapper;
@Override
@Transactional
public void deduct(String userId, int money) {
// 0.获取事务id
String xid = RootContext.getXID();
// 1.扣减可用余额
accountMapper.deduct(userId, money);
// 2.记录冻结金额,事务状态
AccountFreeze freeze = new AccountFreeze();
freeze.setUserId(userId);
freeze.setFreezeMoney(money);
freeze.setState(AccountFreeze.State.TRY);
freeze.setXid(xid);
freezeMapper.insert(freeze);
}
@Override
public boolean confirm(BusinessActionContext ctx) {
// 1.获取事务id
String xid = ctx.getXid();
// 2.根据id删除冻结记录
int count = freezeMapper.deleteById(xid);
return count == 1;
}
@Override
public boolean cancel(BusinessActionContext ctx) {
// 0.查询冻结记录
String xid = ctx.getXid();
AccountFreeze freeze = freezeMapper.selectById(xid);
// 1.恢复可用余额
accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
// 2.将冻结金额清零,状态改为CANCEL
freeze.setFreezeMoney(0);
freeze.setState(AccountFreeze.State.CANCEL);
int count = freezeMapper.updateById(freeze);
return count == 1;
}
}
Saga也分为两个阶段:
一阶段:直接提交本地事务
二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
优点:
事务参与者可以基于事件驱动实现异步调用,吞吐高
一阶段直接提交事务,无锁,性能好
不用编写TCC中的三个阶段,实现简单
缺点:
软状态持续时间不确定,时效性差
没有锁,没有事务隔离,会有脏写
搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。
但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。
比如一个TC集群在上海,另一个TC集群在杭州:
微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。
Redis
见文章
https://blog.csdn.net/m0_71534259/article/details/135725967?spm=1001.2014.3001.5501
传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图:
存在下面的问题:
•请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈
•Redis缓存失效时,会对数据库产生冲击
多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:
浏览器访问静态资源时,优先读取浏览器本地缓存
访问非静态资源(ajax查询数据)时,访问服务端
请求到达Nginx后,优先读取Nginx本地缓存
如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
如果Redis查询未命中,则查询Tomcat
请求进入Tomcat后,优先查询JVM进程缓存
如果JVM进程缓存未命中,则查询数据库
在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了。
因此这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理,如图:
另外,我们的Tomcat服务将来也会部署为集群模式:
可见,多级缓存的关键有两个:
一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
另一个就是在Tomcat中实现JVM进程缓存
其中Nginx编程则会用到OpenResty框架结合Lua这样的语言。
缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:
分布式缓存,例如Redis:
优点:存储容量更大、可靠性更好、可以在集群间共享
缺点:访问缓存有网络开销
场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
进程本地缓存,例如HashMap、GuavaCache:
优点:读取本地内存,没有网络开销,速度更快
缺点:存储容量有限、可靠性较低、无法共享
场景:性能要求较高,缓存数据量较小
我们今天会利用Caffeine框架来实现JVM进程缓存。
Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:GitHub - ben-manes/caffeine: A high performance caching library for Java
缓存使用的基本API:
@Test
void testBasicOps() {
// 构建cache对象
Cache cache = Caffeine.newBuilder().build();
// 存数据
cache.put("gf", "迪丽热巴");
// 取数据
String gf = cache.getIfPresent("gf");
System.out.println("gf = " + gf);
// 取数据,包含两个参数:
// 参数一:缓存的key
// 参数二:Lambda表达式,表达式参数就是缓存的key,方法体是查询数据库的逻辑
// 优先根据key查询JVM缓存,如果未命中,则执行参数二的Lambda表达式
String defaultGF = cache.get("defaultGF", key -> {
// 根据key去数据库查询数据
return "柳岩";
});
System.out.println("defaultGF = " + defaultGF);
}
Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。
Caffeine提供了三种缓存驱逐策略:
基于容量:设置缓存的数量上限
// 创建缓存对象
Cache cache = Caffeine.newBuilder()
.maximumSize(1) // 设置缓存大小上限为 1
.build();
基于时间:设置缓存的有效时间
// 创建缓存对象
Cache cache = Caffeine.newBuilder()
// 设置缓存有效期为 10 秒,从最后一次写入开始计时
.expireAfterWrite(Duration.ofSeconds(10))
.build();
基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。
注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。
利用Caffeine实现下列需求:
给根据id查询商品的业务添加缓存,缓存未命中时查询数据库
给根据id查询商品库存的业务添加缓存,缓存未命中时查询数据库
缓存初始大小为100
缓存上限为10000
首先,我们需要定义两个Caffeine的缓存对象,分别保存商品、库存的缓存数据。
在item-service的com.heima.item.config
包下定义CaffeineConfig
类:
package com.heima.item.config;
import com.github.benmanes.caffeine.cache.Cache;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration
public class CaffeineConfig {
@Bean
public Cache itemCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
@Bean
public Cache stockCache(){
return Caffeine.newBuilder()
.initialCapacity(100)
.maximumSize(10_000)
.build();
}
}
然后,修改item-service中的com.heima.item.web
包下的ItemController类,添加缓存逻辑:
@RestController
@RequestMapping("item")
public class ItemController {
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
@Autowired
private Cache itemCache;
@Autowired
private Cache stockCache;
// ...其它略
@GetMapping("/{id}")
public Item findById(@PathVariable("id") Long id) {
return itemCache.get(id, key -> itemService.query()
.ne("status", 3).eq("id", key)
.one()
);
}
@GetMapping("/stock/{id}")
public ItemStock findStockById(@PathVariable("id") Long id) {
return stockCache.get(id, key -> stockService.getById(key));
}
}
Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。
Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:The Programming Language Lua
Lua经常嵌入到C语言开发的程序中,例如游戏开发、游戏插件等。
Nginx本身也是C语言开发,因此也允许基于Lua做拓展。
CentOS7默认已经安装了Lua语言环境,所以可以直接运行Lua代码。
1)在Linux虚拟机的任意目录下,新建一个hello.lua文件
2)添加下面的内容
print("Hello World!")
3)运行
Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:
-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true
Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已:
-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map = {name='Jack', age=21}
Lua中的数组角标是从1开始,访问的时候与Java中类似:
-- 访问数组,lua数组的角标从1开始
print(arr[1])
Lua中的table可以用key来访问:
-- 访问table
print(map['name'])
print(map.name)
对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。
遍历数组:
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
print(index, value)
end
遍历普通table
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
print(key, value)
end
定义函数的语法:
function 函数名( argument1, argument2..., argumentn)
-- 函数体
return 返回值
end
例如,定义一个函数,用来打印数组:
function printArr(arr)
for index, value in ipairs(arr) do
print(value)
end
end
类似Java的条件控制,例如if、else语法:
if(布尔表达式)
then
--[ 布尔表达式为 true 时执行该语句块 --]
else
--[ 布尔表达式为 false 时执行该语句块 --]
end
与java不同,布尔表达式中的逻辑运算是基于英文单词:
需求:自定义一个函数,可以打印table,当参数为nil时,打印错误信息
function printArr(arr)
if not arr then
print('数组不能为空!')
end
for index, value in ipairs(arr) do
print(value)
end
end
OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。具备下列特点:
具备Nginx的完整功能
基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
允许使用Lua自定义业务逻辑、自定义库
官方网站: OpenResty® - 开源官方站
现在,商品详情页使用的是假的商品数据。不过在浏览器中,可以看到页面有发起ajax请求查询真实商品数据。
这个请求如下:
请求地址是localhost,端口是80,就被windows上安装的Nginx服务给接收到了。然后代理给了OpenResty集群:
我们需要在OpenResty中编写业务,查询商品数据并返回到浏览器。
但是这次,我们先在OpenResty接收请求,返回假的商品数据。
OpenResty的很多功能都依赖于其目录下的Lua库,需要在nginx.conf中指定依赖库的目录,并导入依赖:
1)添加对OpenResty的Lua模块的加载
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在其中的http下面,添加下面代码:
#lua 模块
lua_package_path "/usr/local/openresty/lualib/?.lua;;";
#c模块
lua_package_cpath "/usr/local/openresty/lualib/?.so;;";
2)监听/api/item路径
修改/usr/local/openresty/nginx/conf/nginx.conf
文件,在nginx.conf的server下面,添加对/api/item这个路径的监听:
location /api/item {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
这个监听,就类似于SpringMVC中的@GetMapping("/api/item")
做路径映射。
而content_by_lua_file lua/item.lua
则相当于调用item.lua这个文件,执行其中的业务,把结果返回给用户。相当于java中调用service。
1)在/usr/loca/openresty/nginx
目录创建文件夹:lua
2)在/usr/loca/openresty/nginx/lua
文件夹下,新建文件:item.lua
3)编写item.lua,返回假数据
item.lua中,利用ngx.say()函数返回数据到Response中
ngx.say('{"id":10001,"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
4)重新加载配置
nginx -s reload
刷新商品页面:http://localhost/item.html?id=1001,即可看到效果
在前端发起的ajax请求如图:
可以看到商品id是以路径占位符方式传递的,因此可以利用正则表达式匹配的方式来获取ID
1)获取商品id
修改/usr/loca/openresty/nginx/nginx.conf
文件中监听/api/item的代码,利用正则表达式获取ID:
location ~ /api/item/(\d+) {
# 默认的响应类型
default_type application/json;
# 响应结果由lua/item.lua文件来决定
content_by_lua_file lua/item.lua;
}
2)拼接ID并返回
修改/usr/loca/openresty/nginx/lua/item.lua
文件,获取id并拼接到结果中返回:
-- 获取商品id
local id = ngx.var[1]
-- 拼接并返回
ngx.say('{"id":' .. id .. ',"name":"SALSA AIR","title":"RIMOWA 21寸托运箱拉杆箱 SALSA AIR系列果绿色 820.70.36.4","price":17900,"image":"https://m.360buyimg.com/mobilecms/s720x720_jfs/t6934/364/1195375010/84676/e9f2c55f/597ece38N0ddcbc77.jpg!q70.jpg.webp","category":"拉杆箱","brand":"RIMOWA","spec":"","status":1,"createTime":"2019-04-30T16:00:00.000+00:00","updateTime":"2019-04-30T16:00:00.000+00:00","stock":2999,"sold":31290}')
3)重新加载并测试
运行命令以重新加载OpenResty配置:
nginx -s reload
刷新页面可以看到结果中已经带上了ID
拿到商品ID后,本应去缓存中查询商品信息,不过目前我们还未建立nginx、redis缓存。因此,这里我们先根据商品id去tomcat查询商品信息。我们实现如图部分:
需要注意的是,我们的OpenResty是在虚拟机,Tomcat是在Windows电脑上。两者IP一定不要搞错了。
nginx提供了内部API用以发送http请求:
local resp = ngx.location.capture("/path",{
method = ngx.HTTP_GET, -- 请求方式
args = {a=1,b=2}, -- get方式传参数
})
返回的响应内容包括:
注意:这里的path是路径,并不包含IP和端口。这个请求会被nginx内部的server监听并处理。
但是我们希望这个请求发送到Tomcat服务器,所以还需要编写一个server来对这个路径做反向代理:
location /path {
# 这里是windows电脑的ip和Java服务端口,需要确保windows防火墙处于关闭状态
proxy_pass http://192.168.150.1:8081;
}
原理如图:
下面,我们封装一个发送Http请求的工具,基于ngx.location.capture来实现查询tomcat。
1)添加反向代理,到windows的Java服务
因为item-service中的接口都是/item开头,所以我们监听/item路径,代理到windows上的tomcat服务。
修改 /usr/local/openresty/nginx/conf/nginx.conf文件,添加一个location:
location /item {
proxy_pass http://192.168.150.1:8081;
}
以后,只要我们调用ngx.location.capture("/item"),就一定能发送请求到windows的tomcat服务。
2)封装工具类
之前我们说过,OpenResty启动时会加载以下两个目录中的工具文件:
所以,自定义的http工具也需要放到这个目录下。
在/usr/local/openresty/lualib目录下,新建一个common.lua文件:
vi /usr/local/openresty/lualib/common.lua
内容如下:
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http请求查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http
}
return _M
这个工具将read_http函数封装到_M这个table类型的变量中,并且返回,这类似于导出。
使用的时候,可以利用require('common')来导入该函数库,这里的common是函数库的文件名。
3)实现商品查询
最后,我们修改/usr/local/openresty/lua/item.lua文件,利用刚刚封装的函数库实现对tomcat的查询:
-- 引入自定义common工具模块,返回值是common中返回的 _M
local common = require("common")
-- 从 common中获取read_http这个函数
local read_http = common.read_http
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
这里查询到的结果是json字符串,并且包含商品、库存两个json字符串,页面最终需要的是把两个json拼接为一个json:
这就需要我们先把JSON变为lua的table,完成数据整合后,再转为JSON。
OpenResty提供了一个cjson的模块用来处理JSON的序列化和反序列化。
官方地址: GitHub - openresty/lua-cjson: Lua CJSON is a fast JSON encoding/parsing module for Lua
1)引入cjson模块:
local cjson = require "cjson"
2)序列化:
local obj = {
name = 'jack',
age = 21
}
-- 把 table 序列化为 json
local json = cjson.encode(obj)
3)反序列化:
local json = '{"name": "jack", "age": 21}'
-- 反序列化 json为 table
local obj = cjson.decode(json);
print(obj.name)
下面,我们修改之前的item.lua中的业务,添加json处理功能:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
-- 导入cjson库
local cjson = require('cjson')
-- 获取路径参数
local id = ngx.var[1]
-- 根据id查询商品
local itemJSON = read_http("/item/".. id, nil)
-- 根据id查询商品库存
local itemStockJSON = read_http("/item/stock/".. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
刚才的代码中,我们的tomcat是单机部署。而实际开发中,tomcat一定是集群模式:
因此,OpenResty需要对tomcat集群做负载均衡。
而默认的负载均衡规则是轮询模式,当我们查询/item/10001时:
你看,因为轮询的原因,第一次查询8081形成的JVM缓存并未生效,直到下一次再次访问到8081时才可以生效,缓存命中率太低了。
怎么办?
如果能让同一个商品,每次查询时都访问同一个tomcat服务,那么JVM缓存就一定能生效了。
也就是说,我们需要根据商品id做负载均衡,而不是轮询。
nginx提供了基于请求路径做负载均衡的算法:
nginx根据请求路径做hash运算,把得到的数值对tomcat服务的数量取余,余数是几,就访问第几个服务,实现负载均衡。
例如:
只要id不变,每次hash运算结果也不会变,那就可以保证同一个商品,一直访问同一个tomcat服务,确保JVM缓存生效。
修改/usr/local/openresty/nginx/conf/nginx.conf文件,实现基于ID做负载均衡。
首先,定义tomcat集群,并设置基于路径做负载均衡:
upstream tomcat-cluster {
hash $request_uri;
server 192.168.150.1:8081;
server 192.168.150.1:8082;
}
然后,修改对tomcat服务的反向代理,目标指向tomcat集群:
location /item {
proxy_pass http://tomcat-cluster;
}
重新加载OpenResty
nginx -s reload
启动两台tomcat服务:
同时启动:
清空日志后,再次访问页面,可以看到不同id的商品,访问到了不同的tomcat服务:
Redis缓存会面临冷启动问题:
冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。
缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。
我们数据量较少,并且没有数据统计相关功能,目前可以在启动时将所有数据都放入缓存中。
1)利用Docker安装Redis
docker run --name redis -p 6379:6379 -d redis redis-server --appendonly yes
2)在item-service服务中引入Redis依赖
org.springframework.boot
spring-boot-starter-data-redis
3)配置Redis地址
spring:
redis:
host: 192.168.150.101
4)编写初始化类
缓存预热需要在项目启动时完成,并且必须是拿到RedisTemplate之后。
这里我们利用InitializingBean接口来实现,因为InitializingBean可以在对象被Spring创建并且成员变量全部注入后执行。
package com.heima.item.config;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;
import java.util.List;
@Component
public class RedisHandler implements InitializingBean {
@Autowired
private StringRedisTemplate redisTemplate;
@Autowired
private IItemService itemService;
@Autowired
private IItemStockService stockService;
private static final ObjectMapper MAPPER = new ObjectMapper();
@Override
public void afterPropertiesSet() throws Exception {
// 初始化缓存
// 1.查询商品信息
List- itemList = itemService.list();
// 2.放入缓存
for (Item item : itemList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(item);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
}
// 3.查询商品库存信息
List
stockList = stockService.list();
// 4.放入缓存
for (ItemStock stock : stockList) {
// 2.1.item序列化为JSON
String json = MAPPER.writeValueAsString(stock);
// 2.2.存入redis
redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
}
}
}
现在,Redis缓存已经准备就绪,我们可以再OpenResty中实现查询Redis的逻辑了。如下图红框所示:
当请求进入OpenResty之后:
OpenResty提供了操作Redis的模块,我们只要引入该模块就能直接使用。但是为了方便,我们将Redis操作封装到之前的common.lua工具库中。
修改/usr/local/openresty/lualib/common.lua文件:
1)引入Redis模块,并初始化Redis对象
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
2)封装函数,用来释放Redis连接,其实是放入连接池
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
3)封装函数,根据key查询Redis数据
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
4)导出
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M
完整的common.lua:
-- 导入redis
local redis = require('resty.redis')
-- 初始化redis
local red = redis:new()
red:set_timeouts(1000, 1000, 1000)
-- 关闭redis连接的工具方法,其实是放入连接池
local function close_redis(red)
local pool_max_idle_time = 10000 -- 连接的空闲时间,单位是毫秒
local pool_size = 100 --连接池大小
local ok, err = red:set_keepalive(pool_max_idle_time, pool_size)
if not ok then
ngx.log(ngx.ERR, "放入redis连接池失败: ", err)
end
end
-- 查询redis的方法 ip和port是redis地址,key是查询的key
local function read_redis(ip, port, key)
-- 获取一个连接
local ok, err = red:connect(ip, port)
if not ok then
ngx.log(ngx.ERR, "连接redis失败 : ", err)
return nil
end
-- 查询redis
local resp, err = red:get(key)
-- 查询失败处理
if not resp then
ngx.log(ngx.ERR, "查询Redis失败: ", err, ", key = " , key)
end
--得到的数据为空处理
if resp == ngx.null then
resp = nil
ngx.log(ngx.ERR, "查询Redis数据为空, key = ", key)
end
close_redis(red)
return resp
end
-- 封装函数,发送http请求,并解析响应
local function read_http(path, params)
local resp = ngx.location.capture(path,{
method = ngx.HTTP_GET,
args = params,
})
if not resp then
-- 记录错误信息,返回404
ngx.log(ngx.ERR, "http查询失败, path: ", path , ", args: ", args)
ngx.exit(404)
end
return resp.body
end
-- 将方法导出
local _M = {
read_http = read_http,
read_redis = read_redis
}
return _M
接下来,我们就可以去修改item.lua文件,实现对Redis的查询了。
查询逻辑是:
1)修改/usr/local/openresty/lua/item.lua文件,添加一个查询函数:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
2)而后修改商品查询、库存查询的业务:
3)完整的item.lua代码:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 封装查询函数
function read_data(key, path, params)
-- 查询本地缓存
local val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))
现在,整个多级缓存中只差最后一环,也就是nginx的本地缓存了。如图:
OpenResty为Nginx提供了shard dict的功能,可以在nginx的多个worker之间共享数据,实现缓存功能。
1)开启共享字典,在nginx.conf的http下添加配置:
# 共享字典,也就是本地缓存,名称叫做:item_cache,大小150m
lua_shared_dict item_cache 150m;
2)操作共享字典:
-- 获取本地缓存对象
local item_cache = ngx.shared.item_cache
-- 存储, 指定key、value、过期时间,单位s,默认为0代表永不过期
item_cache:set('key', 'value', 1000)
-- 读取
local val = item_cache:get('key')
1)修改/usr/local/openresty/lua/item.lua文件,修改read_data查询函数,添加本地缓存逻辑:
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
2)修改item.lua中查询商品和库存的业务,实现最新的read_data函数:
其实就是多了缓存时间参数,过期后nginx缓存会自动删除,下次访问即可更新缓存。
这里给商品基本信息设置超时时间为30分钟,库存为1分钟。
因为库存更新频率较高,如果缓存时间过长,可能与数据库差异较大。
3)完整的item.lua文件:
-- 导入common函数库
local common = require('common')
local read_http = common.read_http
local read_redis = common.read_redis
-- 导入cjson库
local cjson = require('cjson')
-- 导入共享词典,本地缓存
local item_cache = ngx.shared.item_cache
-- 封装查询函数
function read_data(key, expire, path, params)
-- 查询本地缓存
local val = item_cache:get(key)
if not val then
ngx.log(ngx.ERR, "本地缓存查询失败,尝试查询Redis, key: ", key)
-- 查询redis
val = read_redis("127.0.0.1", 6379, key)
-- 判断查询结果
if not val then
ngx.log(ngx.ERR, "redis查询失败,尝试查询http, key: ", key)
-- redis查询失败,去查询http
val = read_http(path, params)
end
end
-- 查询成功,把数据写入本地缓存
item_cache:set(key, val, expire)
-- 返回数据
return val
end
-- 获取路径参数
local id = ngx.var[1]
-- 查询商品信息
local itemJSON = read_data("item:id:" .. id, 1800, "/item/" .. id, nil)
-- 查询库存信息
local stockJSON = read_data("item:stock:id:" .. id, 60, "/item/stock/" .. id, nil)
-- JSON转化为lua的table
local item = cjson.decode(itemJSON)
local stock = cjson.decode(stockJSON)
-- 组合数据
item.stock = stock.stock
item.sold = stock.sold
-- 把item序列化为json 返回结果
ngx.say(cjson.encode(item))