- 【Pandas】pandas Series repeat
liuweidong0802
PandasSeriespandas
Pandas2.2SeriesComputationsdescriptivestats方法描述Series.argsort([axis,kind,order,stable])用于返回Series中元素排序后的索引位置的方法Series.argmin([axis,skipna])用于返回Series中最小值索引位置的方法Series.argmax([axis,skipna])用于返回Series中最
- 拉格朗日插值多项式(Lagrange Interpolation)原理 + Python 代码
Illusionna.
python
原理部分见:拉格朗日插值—Homev1.2023.11文档https://illusionna.readthedocs.io/zh/latest/projects/Mathematics/Numerical%20Analysis/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC/Lagrange.html代码依赖第三方库:1.numpy2
- Numpy 自学笔记(一)
.Queenie.
numpy小白自学笔记
@numpyNumpy自学笔记(一)更加详细的学习资料请见:https://www.numpy.org.cn/user/一.基础知识NumPy的数组类被调用ndarray。它也被别名所知array。请注意,numpy.array这与标准Python库类不同array.array,后者只处理一维数组并提供较少的功能。ndarray对象更重要的属性是:importnumpyasnpa=np.arang
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- Pytorch 第九回:卷积神经网络——ResNet模型
Start_Present
pytorchcnnpython分类深度学习
Pytorch第九回:卷积神经网络——ResNet模型本次开启深度学习第九回,基于Pytorch的ResNet卷积神经网络模型。这是分享的第四个卷积神经网络模型。该模型是基于解决因网络加深而出现的梯度消失和网络退化而进行设计的。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu11
- 实战1. 利用Pytorch解决 CIFAR 数据集中的图像分类为 10 类的问题
啥都鼓捣的小yao
深度学习pytorch分类人工智能深度学习
实战1.利用Pytorch解决CIFAR数据集中的图像分类为10类的问题加载数据建立模型模型训练测试评估你的任务是建立一个用于CIFAR图像分类的神经网络,并实现分类质量>0.5。注意:因为我们实战1里只讨论最简单的神经网络构建,所以准确率达到0.5以上就符合我们的目标,后面会不断学习新的模型进行优化CIFAR的数据集如下图所示:我们大概所需要的功能包如下:importnumpyasnpimpor
- python可應用在金融分析的那一個方面,如何部署在linux server上面。
蠟筆小新工程師
金融
Python在金融分析中應用廣泛,以下是幾個主要方面:###1.**數據處理與分析**-使用**Pandas**和**NumPy**等庫來處理和分析大規模數據集,進行清理、轉換和統計運算。-舉例:處理歷史市場數據,分析價格趨勢、交易量等。###2.**機器學習與預測**-使用**scikit-learn**、**TensorFlow**或**PyTorch**建立模型進行股票價格預測、信用風險評估
- pyscript的用法
新时代_打工人
pythonpython开发语言前端框架
PyScript核心特性Pythoninthebrowser:启用drop-incontent、外部文件托管(基于Pyodide项目),以及不依赖服务器端配置的应用程序托管。Python生态:提供流行的Python和科学计算软件包(例如numpy,pandas,scikit-learn等)。PythonwithJavaScript:在Python和JavaScript对象和命名空间之间进行双向通信
- 今天这道题看了好久的题解,才理解意思,看来有的时候刷题也要积累一些知识。
suohanfjiusbis
pythonleetcode算法
classSolution:defgameOfLife(self,board:List[List[int]])->None:"""Donotreturnanything,modifyboardin-placeinstead."""importnumpyasnpr,c=len(board),len(board[0])board_exp=np.array([[0for_inrange(c+2)]for
- Python 自动化探索性数据分析(EDA)工具
东方佑
量子变法python自动化数据分析
1.PandasProfiling功能特点:自动生成详细的统计报告,包含数据概览、单变量分析、相关性矩阵、缺失值分析等。支持交互式HTML报告,可导出为PDF或其他格式。适合快速生成数据集的全面摘要。使用示例:importpandasaspdfrompandas_profilingimportProfileReportdf=pd.read_csv("data.csv")profile=Profil
- dataframe数据常用python操作
shlay
统计分析软件python信息可视化数据分析
dataframe数据常用python操作dataframe数据常用知识点1.创建dataframe1.1使用字典创建DataFrame:1.2使用列表创建DataFrame:1.3使用numpy数组创建DataFrame:1.4从TXT文件中创建DataFrame:1.5从CSV文件中创建DataFrame:1.6从Excel文件中创建DataFrame:2.dataframe数据保存3.dat
- DataFrame中添加和删处‘行’
手机忘记时间
pandas
添加:在Pandas中,df.loc[len(df)]=new_values这行代码用于在DataFramedf的末尾添加一行新数据。这里的len(df)返回的是DataFrame当前的行数,因此df.loc[len(df)]指向的是一个新的行索引,这个索引在当前DataFrame中还不存在。以下是这行代码的详细解释:df:代表你的DataFrame对象。loc:是Pandas提供的基于标签的索引
- Python数据可视化——Matplotlib的基本绘图:图形、轴、标签
大数据张老师
python信息可视化matplotlib
Matplotlib的绘图系统是由多个层次组成的,它的基本结构包括图形(Figure)、坐标轴(Axes)、刻度(Ticks)、标签(Labels)等多个部分。理解这些基本组件,有助于更好地使用Matplotlib绘制和优化图表。在本节中,我们将结合NumPy数组,详细讲解Matplotlib的基本结构,并展示它们在实际项目中的应用。图形(Figure):整个绘图的容器在Matplotlib中,图
- 使用Python 打造专属自己的屏幕录制工具:使用NumPy、PIL和OpenCV的完整指南
LIY若依
opencv人工智能python应用开发录屏软件
简介在这篇博客中,我们将介绍如何使用NumPy、PIL和OpenCV创建一个屏幕录制工具。通过逐步解析代码片段,解释每个部分的功能,最终展示完整代码。希望这篇博客能帮助你理解如何实现屏幕录制功能。依赖库在运行代码之前,请确保已安装以下依赖库:NumPyPIL(Pillow)OpenCV可以使用以下命令安装这些库:pipinstallnumpypillowopencv-python步骤1:导入必要的
- OpenCV基础:用Python生成一幅黑白图像
superdont
计算机视觉入门python开发语言opencv人工智能计算机视觉矩阵
OpenCV的基础是处理图像,而图像的基础是矩阵。因此,如何使用好矩阵时非常关键的。下面我们通过一个具体的实例来展示如何通过Python和OpenCV对矩阵进行操作,从而更好地实现对图像的处理。具体要求:使用Python:生成一幅左黑右白的灰度图像,图像大小为16×16像素。借助OpenCV库。输出数值,并显示图像。Python代码下面的程序通过OpenCV、numpy两个库实现构造矩阵,修改特征
- 安装CUDA12.1和torch2.2.1下的DKG
超级无敌大好人
python
1.创建python虚拟环境setNO_PROXY=*condadeactivatecondaenvremove-nfindkgcondacreate-nfindkgpython=3.11condaactivatefindkgcondainstallpackagingsetuptoolspipuninstallnumpycondainstallnumpy=1.24.3请注意,DKG需要python
- 2025自动化采集豆瓣选电影20年代以来的推荐数据并进行结构化分析及数据缺失值处理方案
BigWiggins
python开发语言单元测试
今天在豆瓣数据中采集20年代以来的电影时遇到了取得电影标题/评分/年份等大量缺失值核心功能动态分页采集:通过API参数迭代获取全量数据反爬策略:请求头模拟、Cookies自动化、随机延迟数据清洗:缺失值填充、嵌套JSON解析持久化存储:JSON结构化存储与PandasDataFrame转换技术栈请求处理:requests库实现API调用数据解析:json模块处理结构化响应异常管理:try-exce
- 【numpy2】python计算BMI指数、numpy(数组、数据类型、常用属性、常见方法、索引与切片、比较运算符、基本函数、必会函数、随机数模块、赌场案例)
林光虚霁晓
数据分析pythonnumpy开发语言
1python计算BMI指数2numpy中数组的概念3numpy的数据类型4numpy的常用属性5numpy的常见方法6numpy的索引与切片7numpy的比较运算符8numpy的基本函数8.1numpy的必会函数8.2numpy的随机数模块9numpy的赌场案例1python计算BMI指数#身高height=[170,173,178,180,183]#体重weight=[76,65,70,77,
- sklearn库安装
吧啦吧啦吡叭卜
sklearn人工智能python
已经安装了numpy、matplotlib、scipy这些库一直报错×pythonsetup.pyegg_infodidnotrunsuccessfully.│exitcode:1╰─>[15linesofoutput]The'sklearn'PyPIpackageisdeprecated,use'scikit-learn'ratherthan'sklearn'forpipcommands.Her
- python量化数据15:计算同花顺涨停次日涨跌幅表现
ETF股债基指标
linux运维服务器
一、环境安装pipinstallpandaspipinstallrequestspipinstallmootdx二、代码frommootdx.quotesimportQuotesimportpandasaspdimportrequestsimporttimeimportjsonclient=Quotes.factory(market='std')defget_open_limit_pool(dat
- 笔试题1:电商销售数据处理与分析
clownAdam
大数据笔试题大数据面试
笔试题1电商销售数据处理与分析:某电商平台提供了一份销售数据文件sales_data.csv,包含以下字段:order_id(订单ID)、customer_id(客户ID)、product_name(产品名称)、quantity(购买数量)、price(产品单价)、order_date(订单日期,格式为YYYY-MM-DD)。请使用Python的Pandas库完成以下任务:读取sales_data
- 基于pandas的哪吒2电影评论数据分析
2302_80651048
数据分析大数据数据挖掘
一、项目背景《哪吒2》作为国产动画电影的续作,凭借前作积累的口碑与IP效应,上映后引发广泛讨论。为深入理解观众对影片的真实反馈,挖掘市场评价中的关键信息,本项目基于电影评论数据集,从评分、情感倾向、地域分布、时间趋势等多维度展开分析,旨在为电影制作方、宣发团队及行业研究者提供数据驱动的决策支持。二、分析目标观众评价洞察:解析评分分布与情感倾向,识别影片的核心优势与争议点。用户行为分析:探索评论时间
- Pandas-为什么 Polars 比 Pandas 使用更少的内存
李星星BruceL
自动化测试pandaspython
目录为什么Polars比Pandas使用更少的内存使用Pandas处理大量数据可能会很困难;很容易耗尽内存,导致程序变慢甚至崩溃。Polars数据框库是一个潜在的解决方案。虽然Polars主要以比Pandas运行更快而闻名,但如果使用得当,它有时也可以显著减少内存使用。特别是,某些在Pandas中需要手动完成的技术可以在Polars中自动完成,从而让你在处理大型数据集时使用更少的内存——并且减少你
- numpy版本踩坑总结 持续更新
AI算法网奇
python宝典python基础numpy
目录1.23版本报错module'numpy'hasnoattribute'bool'.协方差矩阵第2次优化:1.23版本影响库smplx报错module'numpy'hasnoattribute'bool'.解决方法:pipinstallnumpy==1.23.2测试版本命令:python-c"importnumpyasnp;print(np.__version__)"
- python的pandas函数
soputasmile11
pythonpythonpandas开发语言
Pandas是Python中一个强大且广泛使用的数据分析库,它提供了高效的数据结构和数据操作工具,主要的数据结构有Series(一维数组)和DataFrame(二维表格)。下面将详细介绍Pandas中一些常用函数和方法的用法。1.安装与导入使用pip安装Pandas:pipinstallpandas在Python代码中导入Pandas,通常使用pd作为别名:importpandasaspd2.创建
- Pandas实现Excel的vlookup并且在指定列后面输出
eweidog
pandasexcel
背景:有两个excel,他们有相同的一个列;按照这个列合并成一个大的excel,即vlookup功能要求:只需要第二个excel的少量的列,比如从40个列中挑选2个列新增的来自第二个excel的列需要放到第一个excel指定的列后面;将结果输出到一个新的excel;importpandasaspd#文件路径grade_path=r'C:\TELCEL_MEXICO_BOT\A\学生成绩表.xlsx
- 深度学习系列71:表格检测和识别
IE06
深度学习系列深度学习人工智能
1.pdf处理如果是可编辑的pdf格式,那么可以直接用pdfplumber进行处理:importpdfplumberimportpandasaspdwithpdfplumber.open("中新科技:2015年年度报告摘要.PDF")aspdf:page=pdf.pages[1]#第一页的信息text=page.extract_text()print(text)table=page.extract
- Python常见的第三方库:requests、numpy、pandas
大数据张老师
pythonnumpypandas
常见的第三方库:requests、numpy、pandasPython拥有丰富的第三方库,涵盖了数据分析、网络爬取、人工智能、科学计算等多个领域。其中,requests、numpy和pandas是最常用的三个库,分别用于网络请求、数值计算和数据处理。本节将详细介绍它们的基本功能,并通过示例代码帮助理解它们的使用方法。requests:处理网络请求的库requests是Python中用于处理HTTP
- 闲鱼爬虫 闲鱼爬取 批量搬运上架淘宝软件,闲鱼.上架淘宝辅助软件批量改价/改库存/改标题,批量采集店铺店铺,全店宝贝采集,批量采集店铺高销量自动加水印
向往自由123
爬虫算法pythongithub区块链
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档原理是安卓逆向,通过Hock技术,获取某.鱼店铺所有宝贝信息。前段时间自己做了一个爬取某鱼店铺的软件,输入淘口令,输出整个店铺的宝贝,支持定制化过滤,比如已经卖出的会过滤掉价格低的过滤掉等待。同时支持对某鱼图片自定义水印,最终可以导出为csv表格格式上传到某宝平台。文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据
- 02矩阵运算
依旧阳光的老码农
计算机视觉矩阵线性代数计算机视觉
矩阵运算教案课程目标了解矩阵的基本概念和常见运算。掌握矩阵的加法、乘法、转置、行列式、逆矩阵等运算。结合NumPy进行矩阵运算的编程实践。第一部分:矩阵的基本概念1.1矩阵的定义矩阵(Matrix)是一个m×n的数表,其中:m代表行数(row)n代表列数(column)例如:A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}是一个2×3矩阵。第二部分:矩阵的基本运
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu