- python numpy 生成矩阵_详解:python numpy矩阵的创建与数据类型!(含实例方法)
weixin_39836751
pythonnumpy生成矩阵
前言:今天为大家带来的内容是,详解:pythonnumpy矩阵的创建与数据类型!(含案例方法)本文里面的案例和代码具有不错的参考意义,希望能够在此对各位有所帮助!喜欢的话不忘关注点赞加转发不迷路哦!!!一、构造矩阵矩阵的构造可以有多种方法:1.使用python中的方法构造矩阵-生成一维矩阵#使用python自带的range()方法生成一个矩阵a=list(range(100))#range()产生
- Python安装netCDF4
什么时候能够成为程序猿
python开发语言linux
netCDF4离线安装包LinksfornetCDF4(tsinghua.edu.cn)pipinstall netCDF4-1.6.0-cp39-cp39-win_amd64除了netCDF4还要安装一个cftimecftime离线安装包pipinstall cftime-1.6.2-cp39-cp39-win_amd64以上需要根据自己的python版本来选择。安装numpy超过2.0报错
- OpenCV图像距离检测
yzx991013
计算机视觉项目opencv计算机视觉人工智能python
代码实现:importcv2importnumpyasnpdefcalculate_distance(p1,p2,focal_length,known_width):"""计算两点之间的实际距离:paramp1:点1坐标:paramp2:点2坐标:paramfocal_length:相机焦距:paramknown_width:已知物体的实际宽度:return:两点之间的实际距离"""#计算像素距离
- 用Python写一个ai agent采集,分析,预测工厂生产计划
朗韶智光
python人工智能
为了实现一个AI代理,我们需要使用Python的一些库,如pandas,numpy和scikit-learn。以下是一个简化的工厂生产计划采集、分析和预测的示例。首先,我们需要安装所需的库:```bashpipinstallpandasnumpyscikit-learn```然后,我们可以编写一个简单的AI代理,如下所示:```pythonimportpandasaspdimportnumpyas
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
〖是♂我〗
scikit-learn均值算法聚类
代码:#导入必要的库importmatplotlib.pyplotasplt#用于绘制图形fromsklearn.clusterimportKMeans#KMeans聚类算法importnumpyasnp#数值计算库#定义class1到class4的数据点,模拟四个不同的类(每个类7个二维点)class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5]
- 自定义数据集 使用scikit-learn中svm的包实现svm分类
〖是♂我〗
python开发语言
代码:importnumpyasnp#导入用于数值计算的库importmatplotlib.pyplotasplt#导入用于绘图的库#class1_points和class2_points分别定义了两个类别的数据点,二维坐标class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4
- tf.Keras (tf-1.15)使用记录4-model.fit方法及其callbacks参数
普通攻击往后拉
NN技巧tf.keraskeras人工智能深度学习
model.fit()方法是TensorFlowKeras中用于训练模型的核心方法。其中里面的callbacks参数是实现模型保存、监控、以及和tensorboard联动的重要API1model.fit()方法的参数及使用必需参数x:训练数据的输入。可以是NumPy数组、TensorFlowtf.data.Dataset、Python生成器或keras.utils.Sequence实例。y:训练数
- 基于TensorFlow 2.0的DBN故障诊断程序
ydlhnust
深度学习
以下是一个基于TensorFlow2.0的DBN故障诊断程序,包含特征可视化和结果分析。程序使用合成振动数据进行演示,可直接运行。```pythonimportnumpyasnpimportmatplotlib.pyplotaspltimporttensorflowastffromtensorflow.kerasimportlayers,modelsfromsklearn.model_select
- Python数据的筛选、排序与聚合
大数据张老师
Python程序设计python开发语言Python数据处理
Python数据的筛选、排序与聚合在数据分析过程中,我们常常需要对数据进行筛选、排序和聚合操作,以便从数据集中提取有价值的信息。这些操作是数据预处理和分析的基础,尤其在处理大型数据集时,能够帮助我们快速定位关键数据,进行进一步的分析。Pandas提供了强大的工具来支持这些操作,主要通过对Series和DataFrame的相关方法进行操作来实现。本节将详细讲解如何使用Pandas的Series和Da
- python 数据采集
go5463158465
python爬虫python开发语言
importpandasaspdfromtimeimportsleepimportrequestsimportmatplotlib.pyplotaspltimportmatplotlib.font_managerasfmfromconcurrent.futuresimportThreadPoolExecutor,as_completed#采集部分'''https://ncpscxx.moa.gov
- python建模的步骤_python基础教程之Python 建模步骤|python基础教程|python入门|python教程...
谭俊云
python建模的步骤
#%%#载入数据、查看相关信息importpandasaspdimportnumpyasnpfromsklearn.preprocessingimportLabelEncoderprint('第一步:加载、查看数据')file_path=r'D:\train\201905data\liwang.csv'band_data=pd.read_csv(file_path,encoding='UTF-8'
- pandas ---- pd.DataFrame基本用法
JU HE
python常用库pandaspython
文章目录前言1loc和iloc注意事项。(后面这些都会在笔记中提到)2DataFrame的维度一、DataFrame的创建---pd.DataFrame(data,index=None,columns=None)1字典创建DataFrame(字典转Dataframe很常用)2用numpy数组或者嵌套list创建DataFrame二、DataFrame的访问、索引、切片、布尔索引、修改等操作1行切片
- python 安装库报错 IOError: [Errno 2] No such file or directory: ‘/tmp/pip-build-qxKbBk/numpy/setup.py‘
一个人的Coding
pythonpipnumpy
我的博客尝试在Ubuntu环境中安装python库时报错:$pipinstallnumpyCollectingnumpyDownloadinghttps://files.pythonhosted.org/packages/1c/8a/0db635b225d2aa2984e405dc14bd2b0c324a0c312ea1bc9d283f2b83b038/numpy-2.0.1.tar.gz(18.
- Python能否实现股票的自动买卖?需要具备哪些技术和条件
股票程序化交易接口
量化交易股票API接口Python股票量化交易python股票自动买卖技术条件券商接口股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>Python在股票交易中的基础Python是一种高级编程语言,在股票交易中有诸多优势。它具有简洁的语法,易于学习和编写代码。使用几行简单的Python代码就可以实现数据的读取和初步分析。其丰富的库,如pandas用于数据处理,nump
- 构建基于 Pygame 的高级流体仿真系统
机器懒得学习
pygamepython
流体仿真在计算机图形学、游戏开发和科学计算中扮演着重要角色。通过模拟流体的运动、扩散和相互作用,我们可以创建逼真的视觉效果,甚至用于研究真实世界的物理现象。本文将深入探讨如何利用Python的Pygame和NumPy库,构建一个高效、交互性强的高级流体仿真系统。我们将从物理模型、算法实现到代码优化,逐步解析这一系统的技术细节。系统概述本流体仿真系统是一个基于Pygame的实时交互式仿真工具,支持多
- 机器学习进阶-图像金字塔与轮廓检测-图像金字塔(拉普拉斯金字塔)
weixin_33908217
人工智能python
拉普拉斯金字塔:使用原始图片-pyrUp(pyrDown(Gi)),获得的结果有一点像边缘轮廓的提取上图的意思:1.进行低通滤波2.进行样本的下采样3.进行样本的上采样4.原始图片-经过上面三步后的图片代码:第一步:读入图片第二步:进行样本的下采样第三步:进行样本的上采样第四步:原始图片-变化后的图片importcv2importnumpyasnpimg=cv2.imread('AM.png')#
- 有限元python
NSidle
pythonpygame开发语言
importnumpyasnpimportcopyimportpygame,sysfrompygame.localsimport*classNode:def__init__(self):self.id=-1self.coordinate=[0,0]self.type=-1defcopy(self):returnselfclassRodElement:def__init__(self):self.i
- Python-基于PyQt5,wordcloud,pillow,numpy,os,sys的智能词云生成器
闪云-微星
WPSpythonpillow开发语言pycharmnumpy小程序pyqt
前言:日常生活中,我们有时后就会遇见这样的情形:我们需要将给定的数据进行可视化处理,同时保证呈现比较良好的量化效果。这时候我们可能就会用到词云图。词云图(Wordcloud)又称文字云,是一种文本数据的图片视觉表达方式,一般是由词汇组成类似云的图形,用于展示大量文本数据。词云这个概念首先是由美国西北大学新闻学副教授、新媒体专业主任里奇·戈登提出的,通常用于描述网站上的关键字元数据(标签),或可视化
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- open3d踩雷避坑(运行不了又不报错)
yuyuyue249
python
2024.9.13:open3d的这个问题,折磨了我一整晚+一早上,直到我看到了github的一个issue问题描述:我安装open3d直接:pipinstallopen3d但是学到一半发现运行部分代码问题描述:open3d不出可视化pcd,也不报错只出现:进程已结束。。。。。什么的如下:进程已结束,退出代码为-1073741819(0xC0000005)可能是numpy版本不对!!!!那我直接就
- python pandas 统计列中关键字一共出现的次数
yangshuo1281
pytion
#姓名性别年龄#0张三男11#1李四女16#2赵五男12#3张三男11#4赵五男12#5赵五男12importpandasaspddf=pd.read_excel('./test.xlsx')print(df)print("-----------"
- Python中将实体类列表数据导出到Excel文件
傻啦嘿哟
关于python那些事儿pythonexcel开发语言
目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出DataFrame到Excel文件六、完整代码示例七、扩展功能八、总结在数据处理和报告生成中,将实体类(即自定义对象)的列表数据导出到Excel文件是一项常见任务。Python提供了多种库来实现这一目标,其中最流行的是pandas和openpyxl。本文将通过一个实战案例,展示如何使用这两个库将实体类列
- keras快速上手-基于python的深度学习实践-基于索引的深度学习对话模型-源代码...
weixin_34162401
该章的源代码已经调通,如下,先记录下来,再慢慢理解#!/usr/bin/envpython#coding:utf-8#In[1]:importpandasaspdimportnumpyasnpimportpickleimportkerasfromkeras.modelsimportSequential,Modelfromkeras.layersimportInput,Dense,Activatio
- Python - 小玩意 - 数据字典转Excel
冷风扇666
#搞懂Pythonpythonexcel
importpandasaspd#pip--default-timeout=500000installpandas#pip--default-timeout=500000installopenpyxl#数据字典data_dict={'ID':
- 爬虫_pandas
起来,该敲代码啦
爬虫
123.pyimportpandasaspddf=pd.read_csv('./123.csv')打印某一列;判断某一列是否有空值print(df['NUM_BEDROOMS'])print(df['NUM_BEDROOMS'].isnull())dropna()中写inplace=True修改源数据df2=df.dropna()指定的列的某一行有空值的话就删除那一行数据df3=df.dropna
- chatgpt赋能python:如何配置Python中的NumPy?
yakuchrisfor
ChatGptchatgptpythonnumpy计算机
如何配置Python中的NumPy?如果您是一名Python程序员,那么您可能已经听说过NumPy。NumPy是一个强大的Python库,可用于处理大型多维数组和矩阵,以及用于数值计算和科学计算。因此,NumPy是数据科学中的黄金库,而它的安装是Python编程环境必不可少的一部分。什么是NumPy?NumPy是Python语言的一个扩展程序库,它支持大量的高级数学函数,以及可以高效地操作大型数组
- NumPy 字符串函数
wjs2024
开发语言
NumPy字符串函数引言NumPy是Python中一个强大的科学计算库,它提供了高效的数值计算功能。除了强大的数值处理能力外,NumPy还提供了一系列用于字符串处理的函数,这些函数对于数据清洗和预处理非常有用。本文将详细介绍NumPy中常用的字符串函数,帮助您更好地理解和运用这些函数。NumPy字符串函数概述NumPy字符串函数主要分为以下几类:字符串连接与分割字符串搜索与替换字符串转换与格式化字
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
qwe352633
python
importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_scoredata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1
- Python 最小二乘法 圆度误差高斯牛顿迭代
CAD二次开发秋实
Pythonpython最小二乘法numpy圆度误差
1.最小二乘法求圆度误差importnumpyasnpimportmathimportgeometry_functiondefroundness_lsm(x1,y1):e=0.00000000001y1max_index=y1.index(max(y1))x1min_index=x1.index(min(x1))y1min_index=y1.index(min(y1))pp=[[x1[y1max_
- 【python】追加写入excel,合并工作簿
qq_50653422
excelpython
目录一:删除写入代码(删除所有旧表)二:追加写入代码(保留所有旧表)三、结果展示一:删除写入代码(删除所有旧表)importpandasaspddf1=pd.DataFrame({'A':[1,1,1],'B':[1,1,1]})df2=pd.DataFrame({'C':[0,0,0],'D':[0,0,0]})#使用ExcelWriter写入不同的sheetwithpd.ExcelWriter
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu