原文地址:开发者导航 · 你想要的,我全都有!
高级函数,分组排序
over: 在什么条件之上。
partition by e.deptno: 按部门编号划分(分区)。
order by e.sal desc: 按工资从高到低排序(使用rank()/dense_rank() 时,必须要带order by,否则非法)
rank()/dense_rank(): 分级
遇到有相同数值“字段2”时,有下面三种处理方式:
1、row_number() over
row_number() over(partition by 字段1 order by 字段2); --1,2,3,4,不考虑并列
2、rank() over
rank() over(partition by 字段1 order by 字段2); --1,2,2,4,考虑并列,空出并列所占的名次
3、dense_rank() over
dense_rank() over(partition by 字段1 order by 字段2); --1,2,2,3,考虑并列,不空出并列所占的名次
用法示例
select a2.parent_area_id, a2.name, a1.area_id, a1.name, row_number() over(partition by a2.parent_area_id order by a2.area_id) rank from area a1, area a2 where a1.parent_area_id = a2.area_id
--查询各部门工资最高的雇员的信息
1、方法一
select e.ename, e.job, e.sal, e.deptno from scott.emp e, (select e.deptno, max(e.sal) sal from scott.emp e group by e.deptno) me where e.deptno = me.deptno and e.sal = me.sal;
2、方法二
select e.ename, e.job, e.sal, e.deptno from (select e.ename, e.job, e.sal, e.deptno, rank() over(partition by e.deptno order by e.sal desc) rank from scott.emp e) e where e.rank = 1;
3、方法三
select e.ename, e.job, e.sal, e.deptno from (select e.ename, e.job, e.sal, e.deptno, dense_rank() over(partition by e.deptno order by e.sal desc) rank from scott.emp e) e where e.rank = 1;
整个语句的意思就是:
在按部门划分的基础上,按工资从高到低对雇员进行分级,“级别”由从小到大的数字表示(最小值一定为1)。
那么rank()和dense_rank()有什么区别呢?
rank(): 跳跃排序,如果有两个第一级时,接下来就是第三级。
dense_rank(): 连续排序,如果有两个第一级时,接下来仍然是第二级。
--查询部门最高、最低工资,及员工与部门最高、最低工资的差额
现在我们已经查询得到了部门最高/最低工资,客户需求又来了,查询雇员信息的同时算出雇员工资与部门最高/最低工资的差额。这个还是比较简单,在第一节的group by语句的基础上进行修改如下:
1、方法一
select e.ename, e.job, e.sal, e.deptno, e.sal - me.min_sal diff_min_sal, me.max_sal - e.sal diff_max_sal from scott.emp e, (select e.deptno, min(e.sal) min_sal, max(e.sal) max_sal from scott.emp e group by e.deptno) me where e.deptno = me.deptno order by e.deptno, e.sal;
2、方法二
select e.ename, e.job, e.sal, e.deptno, nvl(e.sal - min(e.sal) over(partition by e.deptno), 0) diff_min_sal, nvl(max(e.sal) over(partition by e.deptno) - e.sal, 0) diff_max_sal from scott.emp e;
这两个语句的查询结果是一样的,大家可以看到min()和max()实际上求的还是最小值和最大值,只不过是在partition by分区基础上的。
--查询比员工工资高一位、低一位员工的工资,及差额
中国人爱攀比,好面子,闻名世界。客户更是好这一口,在和最高/最低工资比较完之后还觉得不过瘾,这次就提出了一个比较变态的需求,计算个人工资与比自己高一位/低一位工资的差额。这个需求确实让我很是为难,在group by语句中不知道应该怎么去实现。不过。。。。现在我们有了over(partition by ...),一切看起来是那么的简单。如下:
select e.ename, e.job, e.sal, e.deptno, lead(e.sal, 1, 0) over(partition by e.deptno order by e.sal) lead_sal, lag(e.sal, 1, 0) over(partition by e.deptno order by e.sal) lag_sal, nvl(lead(e.sal) over(partition by e.deptno order by e.sal) - e.sal, 0) diff_lead_sal, nvl(e.sal - lag(e.sal) over(partition by e.deptno order by e.sal), 0) diff_lag_sal from scott.emp e;
看了上面的语句后,大家是否也会觉得虚惊一场呢(惊出一身冷汗后突然鸡冻起来,这样容易感冒)?
我们还是来讲解一下上面用到的两个新方法吧。
lead(列名,n,m):
当前记录后面第n行记录的<列名>的值,没有则默认值为m;如果不带参数n,m,则查找当前记录后面第一行的记录<列名>的值,没有则默认值为null。
lag(列名,n,m):
当前记录前面第n行记录的<列名>的值,没有则默认值为m;如果不带参数n,m,则查找当前记录前面第一行的记录<列名>的值,没有则默认值为null。
下面再列举一些常用的方法在该语法中的应用(注:带order by子句的方法说明在使用该方法的时候必须要带order by):
select e.ename, e.job, e.sal, e.deptno, first_value(e.sal) over(partition by e.deptno) first_sal, last_value(e.sal) over(partition by e.deptno) last_sal, sum(e.sal) over(partition by e.deptno) sum_sal, avg(e.sal) over(partition by e.deptno) avg_sal, count(e.sal) over(partition by e.deptno) count_num, row_number() over(partition by e.deptno order by e.sal) row_num from scott.emp e;
重要提示:
大家在读完本片文章之后可能会有点误解,就是OVER (PARTITION BY ..)比GROUP BY更好,实际并非如此,前者不可能替代后者,而且在执行效率上前者也没有后者高,只是前者提供了更多的功能而已,所以希望大家在使用中要根据需求情况进行选择。