【数据结构与算法】(6)基础数据结构之栈的链表实现、环形数组实现示例讲解

目录

    • 2.5 栈
      • 1) 概述
      • 2) 链表实现
      • 3) 数组实现
      • 4) 应用
      • 习题
        • E01. 有效的括号-Leetcode 20
        • E02. 后缀表达式求值-Leetcode 120
        • E03. 中缀表达式转后缀
        • E04. 双栈模拟队列-Leetcode 232
        • E05. 单队列模拟栈-Leetcode 225

在这里插入图片描述

2.5 栈

1) 概述

计算机科学中,stack 是一种线性的数据结构,只能在其一端添加数据和移除数据。习惯来说,这一端称之为栈顶,另一端不能操作数据的称之为栈底,就如同生活中的一摞书

先提供一个栈接口

public interface Stack<E> {
    /**
     * 向栈顶压入元素
     * @param value 待压入值
     * @return 压入成功返回 true, 否则返回 false
     */
    boolean push(E value);

    /**
     * 从栈顶弹出元素
     * @return 栈非空返回栈顶元素, 栈为空返回 null
     */
    E pop();

    /**
     * 返回栈顶元素, 不弹出
     * @return 栈非空返回栈顶元素, 栈为空返回 null
     */
    E peek();

    /**
     * 判断栈是否为空
     * @return 空返回 true, 否则返回 false
     */
    boolean isEmpty();

    /**
     * 判断栈是否已满
     * @return 满返回 true, 否则返回 false
     */
    boolean isFull();
}

2) 链表实现

public class LinkedListStack<E> implements Stack<E>, Iterable<E> {

    private final int capacity;
    private int size;
    private final Node<E> head = new Node<>(null, null);

    public LinkedListStack(int capacity) {
        this.capacity = capacity;
    }

    @Override
    public boolean push(E value) {
        if (isFull()) {
            return false;
        }
        head.next = new Node<>(value, head.next);
        size++;
        return true;
    }

    @Override
    public E pop() {
        if (isEmpty()) {
            return null;
        }
        Node<E> first = head.next;
        head.next = first.next;
        size--;
        return first.value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return head.next.value;
    }

    @Override
    public boolean isEmpty() {
        return head.next == null;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            Node<E> p = head.next;
            @Override
            public boolean hasNext() {
                return p != null;
            }

            @Override
            public E next() {
                E value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node<E> {
        E value;
        Node<E> next;

        public Node(E value, Node<E> next) {
            this.value = value;
            this.next = next;
        }
    }
}

3) 数组实现

public class ArrayStack<E> implements Stack<E>, Iterable<E>{
    private final E[] array;
    private int top = 0;

    @SuppressWarnings("all")
    public ArrayStack(int capacity) {
        this.array = (E[]) new Object[capacity];
    }

    @Override
    public boolean push(E value) {
        if (isFull()) {
            return false;
        }
        array[top++] = value;
        return true;
    }

    @Override
    public E pop() {
        if (isEmpty()) {
            return null;
        }
        return array[--top];
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[top-1];
    }

    @Override
    public boolean isEmpty() {
        return top == 0;
    }

    @Override
    public boolean isFull() {
        return top == array.length;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = top;
            @Override
            public boolean hasNext() {
                return p > 0;
            }

            @Override
            public E next() {
                return array[--p];
            }
        };
    }
}

4) 应用

模拟如下方法调用

public static void main(String[] args) {
    System.out.println("main1");
    System.out.println("main2");
    method1();
    method2();
    System.out.println("main3");
}

public static void method1() {
    System.out.println("method1");
    method3();
}

public static void method2() {
    System.out.println("method2");
}

public static void method3() {
    System.out.println("method3");
}

模拟代码

public class CPU {
    static class Frame {
        int exit;

        public Frame(int exit) {
            this.exit = exit;
        }
    }
    static int pc = 1; // 模拟程序计数器 Program counter
    static ArrayStack<Frame> stack = new ArrayStack<>(100); // 模拟方法调用栈

    public static void main(String[] args) {
        stack.push(new Frame(-1));
        while (!stack.isEmpty()) {
            switch (pc) {
                case 1 -> {
                    System.out.println("main1");
                    pc++;
                }
                case 2 -> {
                    System.out.println("main2");
                    pc++;
                }
                case 3 -> {
                    stack.push(new Frame(pc + 1));
                    pc = 100;
                }
                case 4 -> {
                    stack.push(new Frame(pc + 1));
                    pc = 200;
                }
                case 5 -> {
                    System.out.println("main3");
                    pc = stack.pop().exit;
                }
                case 100 -> {
                    System.out.println("method1");
                    stack.push(new Frame(pc + 1));
                    pc = 300;
                }
                case 101 -> {
                    pc = stack.pop().exit;
                }
                case 200 -> {
                    System.out.println("method2");
                    pc = stack.pop().exit;
                }
                case 300 -> {
                    System.out.println("method3");
                    pc = stack.pop().exit;
                }
            }
        }
    }
}

习题

E01. 有效的括号-Leetcode 20

一个字符串中可能出现 [] (){} 三种括号,判断该括号是否有效

有效的例子

()[]{}

([{}])

()

无效的例子

[)

([)]

([]

思路

  • 遇到左括号, 把要配对的右括号放入栈顶
  • 遇到右括号, 若此时栈为空, 返回 false,否则把它与栈顶元素对比
    • 若相等, 栈顶元素弹出, 继续对比下一组
    • 若不等, 无效括号直接返回 false
  • 循环结束
    • 若栈为空, 表示所有括号都配上对, 返回 true
    • 若栈不为空, 表示右没配对的括号, 应返回 false

答案(用到了课堂案例中的 ArrayStack 类)

public boolean isValid(String s) {
    ArrayStack<Character> stack = new ArrayStack<>(s.length() / 2 + 1);
    for (int i = 0; i < s.length(); i++) {
        char c = s.charAt(i);
        if (c == '(') {
            stack.push(')');
        } else if (c == '[') {
            stack.push(']');
        } else if (c == '{') {
            stack.push('}');
        } else {
            if (!stack.isEmpty() && stack.peek() == c) {
                stack.pop();
            } else {
                return false;
            }
        }
    }
    return stack.isEmpty();
}
E02. 后缀表达式求值-Leetcode 120

后缀表达式也称为逆波兰表达式,即运算符写在后面

  • 从左向右进行计算
  • 不必考虑运算符优先级,即不用包含括号

示例

输入:tokens = ["2","1","+","3","*"]
输出:9
即:(2 + 1) * 3

输入:tokens = ["4","13","5","/","+"]
输出:6
即:4 + (13 / 5)

题目假设

  • 数字都视为整数
  • 数字和运算符个数给定正确,不会有除零发生

代码

public int evalRPN(String[] tokens) {
    LinkedList<Integer> numbers = new LinkedList<>();
    for (String t : tokens) {
        switch (t) {
            case "+" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a + b);
            }
            case "-" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a - b);
            }
            case "*" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a * b);
            }
            case "/" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a / b);
            }
            default -> numbers.push(Integer.parseInt(t));
        }
    }
    return numbers.pop();
}
E03. 中缀表达式转后缀
public class E03InfixToSuffix {
    /*
        思路
        1. 遇到数字, 拼串
        2. 遇到 + - * /
            - 优先级高于栈顶运算符 入栈
            - 否则将栈中高级或平级运算符出栈拼串, 本运算符入栈
        3. 遍历完成, 栈中剩余运算符出栈拼串
            - 先出栈,意味着优先运算
        4. 带 ()
            - 左括号直接入栈
            - 右括号要将栈中直至左括号为止的运算符出栈拼串

        |   |
        |   |
        |   |
        _____

        a+b
        a+b-c
        a+b*c
        a*b+c
        (a+b)*c

     */
    public static void main(String[] args) {
        System.out.println(infixToSuffix("a+b"));
        System.out.println(infixToSuffix("a+b-c"));
        System.out.println(infixToSuffix("a+b*c"));
        System.out.println(infixToSuffix("a*b-c"));
        System.out.println(infixToSuffix("(a+b)*c"));
        System.out.println(infixToSuffix("a+b*c+(d*e+f)*g"));
    }

    static String infixToSuffix(String exp) {
        LinkedList<Character> stack = new LinkedList<>();
        StringBuilder sb = new StringBuilder(exp.length());
        for (int i = 0; i < exp.length(); i++) {
            char c = exp.charAt(i);
            switch (c) {
                case '+', '-', '*', '/' -> {
                    if (stack.isEmpty()) {
                        stack.push(c);
                    } else {
                        if (priority(c) > priority(stack.peek())) {
                            stack.push(c);
                        } else {
                            while (!stack.isEmpty() 
                                   && priority(stack.peek()) >= priority(c)) {
                                sb.append(stack.pop());
                            }
                            stack.push(c);
                        }
                    }
                }
                case '(' -> {
                    stack.push(c);
                }
                case ')' -> {
                    while (!stack.isEmpty() && stack.peek() != '(') {
                        sb.append(stack.pop());
                    }
                    stack.pop();
                }
                default -> {
                    sb.append(c);
                }
            }
        }
        while (!stack.isEmpty()) {
            sb.append(stack.pop());
        }
        return sb.toString();
    }

    static int priority(char c) {
        return switch (c) {
            case '(' -> 0;
            case '*', '/' -> 2;
            case '+', '-' -> 1;
            default -> throw new IllegalArgumentException("不合法字符:" + c);
        };
    }
}
E04. 双栈模拟队列-Leetcode 232

给力扣题目用的自实现栈,可以定义为静态内部类

class ArrayStack<E> {

    private E[] array;
    private int top; // 栈顶指针

    @SuppressWarnings("all")
    public ArrayStack(int capacity) {
        this.array = (E[]) new Object[capacity];
    }

    public boolean push(E value) {
        if (isFull()) {
            return false;
        }
        array[top++] = value;
        return true;
    }

    public E pop() {
        if (isEmpty()) {
            return null;
        }
        return array[--top];
    }

    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[top - 1];
    }

    public boolean isEmpty() {
        return top == 0;
    }

    public boolean isFull() {
        return top == array.length;
    }
}

参考解答,注意:题目已说明

  • 调用 push、pop 等方法的次数最多 100
public class E04Leetcode232 {

    /*
        队列头      队列尾
        s1       s2
        顶   底   底   顶
                 abc

        push(a)
        push(b)
        push(c)
        pop()
     */
    ArrayStack<Integer> s1 = new ArrayStack<>(100);
    ArrayStack<Integer> s2 = new ArrayStack<>(100);

    public void push(int x) {
        s2.push(x);
    }

    public int pop() {
        if (s1.isEmpty()) {
            while (!s2.isEmpty()) {
                s1.push(s2.pop());
            }
        }
        return s1.pop();
    }

    public int peek() {
        if (s1.isEmpty()) {
            while (!s2.isEmpty()) {
                s1.push(s2.pop());
            }
        }
        return s1.peek();
    }

    public boolean empty() {
        return s1.isEmpty() && s2.isEmpty();
    }

}
E05. 单队列模拟栈-Leetcode 225

给力扣题目用的自实现队列,可以定义为静态内部类

public class ArrayQueue3<E> {

    private final E[] array;
    int head = 0;
    int tail = 0;

    @SuppressWarnings("all")
    public ArrayQueue3(int c) {
        c -= 1;
        c |= c >> 1;
        c |= c >> 2;
        c |= c >> 4;
        c |= c >> 8;
        c |= c >> 16;
        c += 1;
        array = (E[]) new Object[c];
    }
    
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }        
        array[tail & (array.length - 1)] = value;
        tail++;
        return true;
    }

    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head & (array.length - 1)];
        head++;
        return value;
    }

    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head & (array.length - 1)];
    }

    public boolean isEmpty() {
        return head == tail;
    }

    public boolean isFull() {
        return tail - head == array.length;
    }
}

参考解答,注意:题目已说明

  • 调用 push、pop 等方法的次数最多 100
  • 每次调用 pop 和 top 都能保证栈不为空
public class E05Leetcode225 {
    /*
        队列头     队列尾
        cba
        顶           底

        queue.offer(a)
        queue.offer(b)
        queue.offer(c)
     */
    ArrayQueue3<Integer> queue = new ArrayQueue3<>(100);
    int size = 0;
    public void push(int x) {
        queue.offer(x);
        for (int i = 0; i < size; i++) {
            queue.offer(queue.poll());
        }
        size++;
    }

    public int pop() {
        size--;
        return queue.poll();
    }

    public int top() {
        return queue.peek();
    }

    public boolean empty() {
        return queue.isEmpty();
    }
}

你可能感兴趣的:(数据结构与算法教程,数据结构,链表,java,栈)