C++ 命名空间
定义命名空间
namespace namespace_name {
// 代码声明
}
您可以使用 using namespace 指令,这样在使用命名空间时就可以不用在前面加上命名空间的名称。这个指令会告诉编译器,后续的代码将使用指定的命名空间中的名称。
命名空间可以嵌套,您可以在一个命名空间中定义另一个命名空间,如下所示:
namespace namespace_name1 {
// 代码声明
namespace namespace_name2 {
// 代码声明
}
}
您可以通过使用 :: 运算符来访问嵌套的命名空间中的成员:
// 访问 namespace_name2 中的成员
using namespace namespace_name1::namespace_name2;
// 访问 namespace_name1 中的成员
using namespace namespace_name1;
#include
using namespace std;
// 第一个命名空间
namespace first_space{
void func(){
cout << "Inside first_space" << endl;
}
// 第二个命名空间
namespace second_space{
void func(){
cout << "Inside second_space" << endl;
}
}
}
using namespace first_space::second_space;
int main ()
{
// 调用第二个命名空间中的函数
func();
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Inside second_space
C++ 模板
模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码。
模板是创建泛型类或函数的蓝图或公式。库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念。
每个容器都有一个单一的定义,比如 向量,我们可以定义许多不同类型的向量,比如 vector
您可以使用模板来定义函数和类,接下来让我们一起来看看如何使用。
template ret-type func-name(parameter list)
{
// 函数的主体
}
实例:
#include
#include
#include
#include
#include
using namespace std;
template
class Stack {
private:
vector elems; // 元素
public:
void push(T const&); // 入栈
void pop(); // 出栈
T top() const; // 返回栈顶元素
bool empty() const{ // 如果为空则返回真。
return elems.empty();
}
};
template
void Stack::push (T const& elem)
{
// 追加传入元素的副本
elems.push_back(elem);
}
template
void Stack::pop ()
{
if (elems.empty()) {
throw out_of_range("Stack<>::pop(): empty stack");
}
// 删除最后一个元素
elems.pop_back();
}
template
T Stack::top () const
{
if (elems.empty()) {
throw out_of_range("Stack<>::top(): empty stack");
}
// 返回最后一个元素的副本
return elems.back();
}
int main()
{
try {
Stack intStack; // int 类型的栈
Stack stringStack; // string 类型的栈
// 操作 int 类型的栈
intStack.push(7);
cout << intStack.top() <
C++ 预处理器
预处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。
所有的预处理器指令都是以井号(#)开头,只有空格字符可以出现在预处理指令之前。预处理指令不是 C++ 语句,所以它们不会以分号(;)结尾。
我们已经看到,之前所有的实例中都有 #include 指令。这个宏用于把头文件包含到源文件中。
C++ 还支持很多预处理指令,比如 #include、#define、#if、#else、#line 等,让我们一起看看这些重要指令。
#define macro-name replacement-text
#include
using namespace std;
#define PI 3.14159
int main ()
{
cout << "Value of PI :" << PI << endl;
return 0;
}
C++ 信号处理
信号是由操作系统传给进程的中断,会提早终止一个程序。在 UNIX、LINUX、Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断。
有些信号不能被程序捕获,但是下表所列信号可以在程序中捕获,并可以基于信号采取适当的动作。这些信号是定义在 C++ 头文件
C++ 信号处理库提供了 signal 函数,用来捕获突发事件。以下是 signal() 函数的语法:
void (*signal (int sig, void (*func)(int)))(int);
#include
#include
#include
using namespace std;
void signalHandler( int signum )
{
cout << "Interrupt signal (" << signum << ") received.\n";
// 清理并关闭
// 终止程序
exit(signum);
}
int main ()
{
// 注册信号 SIGINT 和信号处理程序
signal(SIGINT, signalHandler);
while(1){
cout << "Going to sleep...." << endl;
sleep(1);
}
return 0;
}
C++ 多线程
创建线程
#include
pthread_create (thread, attr, start_routine, arg)
// 演示多线程的CPP程序
// 使用三个不同的可调用对象
#include
#include
using namespace std;
// 一个虚拟函数
void foo(int Z)
{
for (int i = 0; i < Z; i++) {
cout << "线程使用函数指针作为可调用参数\n";
}
}
// 可调用对象
class thread_obj {
public:
void operator()(int x)
{
for (int i = 0; i < x; i++)
cout << "线程使用函数对象作为可调用参数\n";
}
};
int main()
{
cout << "线程 1 、2 、3 "
"独立运行" << endl;
// 函数指针
thread th1(foo, 3);
// 函数对象
thread th2(thread_obj(), 3);
// 定义 Lambda 表达式
auto f = [](int x) {
for (int i = 0; i < x; i++)
cout << "线程使用 lambda 表达式作为可调用参数\n";
};
// 线程通过使用 lambda 表达式作为可调用的参数
thread th3(f, 3);
// 等待线程完成
// 等待线程 t1 完成
th1.join();
// 等待线程 t2 完成
th2.join();
// 等待线程 t3 完成
th3.join();
return 0;
}
c++ 11 之后有了标准的线程库:
#include
#include
std::thread::id main_thread_id = std::this_thread::get_id();
void hello()
{
std::cout << "Hello Concurrent World\n";
if (main_thread_id == std::this_thread::get_id())
std::cout << "This is the main thread.\n";
else
std::cout << "This is not the main thread.\n";
}
void pause_thread(int n) {
std::this_thread::sleep_for(std::chrono::seconds(n));
std::cout << "pause of " << n << " seconds ended\n";
}
int main() {
std::thread t(hello);
std::cout << t.hardware_concurrency() << std::endl;//可以并发执行多少个(不准确)
std::cout << "native_handle " << t.native_handle() << std::endl;//可以并发执行多少个(不准确)
t.join();
std::thread a(hello);
a.detach();
std::thread threads[5]; // 默认构造线程
std::cout << "Spawning 5 threads...\n";
for (int i = 0; i < 5; ++i)
threads[i] = std::thread(pause_thread, i + 1); // move-assign threads
std::cout << "Done spawning threads. Now waiting for them to join:\n";
for (auto &thread : threads)
thread.join();
std::cout << "All threads joined!\n";
}
C++ Web 编程
什么是 CGI?
公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的。
CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下:
公共网关接口(CGI),是一种用于外部网关程序与信息服务器(如 HTTP 服务器)对接的接口标准。
目前的版本是 CGI/1.1,CGI/1.2 版本正在推进中。
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace cgicc;
int main ()
{
Cgicc cgi;
cout << "Content-type:text/html\r\n\r\n";
cout << "\n";
cout << "\n";
cout << "CGI 中的文件上传 \n";
cout << "\n";
cout << "\n";
// 获取要被上传的文件列表
const_file_iterator file = cgi.getFile("userfile");
if(file != cgi.getFiles().end()) {
// 在 cout 中发送数据类型
cout << HTTPContentHeader(file->getDataType());
// 在 cout 中写入内容
file->writeToStream(cout);
}
cout << "<文件上传成功>\n";
cout << "\n";
cout << "\n";
return 0;
}
C++ STL 教程
在前面的章节中,我们已经学习了 C++ 模板的概念。C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量、链表、队列、栈。
下面的程序演示了向量容器(一个 C++ 标准的模板),它与数组十分相似,唯一不同的是,向量在需要扩展大小的时候,会自动处理它自己的存储需求:
#include
#include
using namespace std;
int main()
{
// 创建一个向量存储 int
vector vec;
int i;
// 显示 vec 的原始大小
cout << "vector size = " << vec.size() << endl;
// 推入 5 个值到向量中
for(i = 0; i < 5; i++){
vec.push_back(i);
}
// 显示 vec 扩展后的大小
cout << "extended vector size = " << vec.size() << endl;
// 访问向量中的 5 个值
for(i = 0; i < 5; i++){
cout << "value of vec [" << i << "] = " << vec[i] << endl;
}
// 使用迭代器 iterator 访问值
vector::iterator v = vec.begin();
while( v != vec.end()) {
cout << "value of v = " << *v << endl;
v++;
}
return 0;
}