力扣题目链接(opens new window)
给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
注意空字符串可被认为是有效字符串。
括号匹配是使用栈解决的经典问题。
题意其实就像我们在写代码的过程中,要求括号的顺序是一样的,有左括号,相应的位置必须要有右括号。
如果还记得编译原理的话,编译器在 词法分析的过程中处理括号、花括号等这个符号的逻辑,也是使用了栈这种数据结构。
再举个例子,linux系统中,cd这个进入目录的命令我们应该再熟悉不过了。
cd a/b/c/../../
1
这个命令最后进入a目录,系统是如何知道进入了a目录呢 ,这就是栈的应用(其实可以出一道相应的面试题了)
所以栈在计算机领域中应用是非常广泛的。
有的同学经常会想学的这些数据结构有什么用,也开发不了什么软件,大多数同学说的软件应该都是可视化的软件例如APP、网站之类的,那都是非常上层的应用了,底层很多功能的实现都是基础的数据结构和算法。
由于栈结构的特殊性,非常适合做对称匹配类的题目。
首先要弄清楚,字符串里的括号不匹配有几种情况。
一些同学,在面试中看到这种题目上来就开始写代码,然后就越写越乱。
建议在写代码之前要分析好有哪几种不匹配的情况,如果不在动手之前分析好,写出的代码也会有很多问题。
先来分析一下 这里有三种不匹配的情况,
第一种情况,字符串里左方向的括号多余了 ,所以不匹配。
2、第二种情况,括号没有多余,但是 括号的类型没有匹配上。
3.第三种情况,字符串里右方向的括号多余了,所以不匹配。
我们的代码只要覆盖了这三种不匹配的情况,就不会出问题,可以看出 动手之前分析好题目的重要性。
第一种情况:已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false
第二种情况:遍历字符串匹配的过程中,发现栈里没有要匹配的字符。所以return false
第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号return false
那么什么时候说明左括号和右括号全都匹配了呢,就是字符串遍历完之后,栈是空的,就说明全都匹配了。
分析完之后,代码其实就比较好写了,
但还有一些技巧,在匹配左括号的时候,右括号先入栈,就只需要比较当前元素和栈顶相不相等就可以了,比左括号先入栈代码实现要简单的多了!
class Solution {
public:
bool isValid(string s) {
if(s.size()%2 !=0 )// 如果s的长度为奇数,一定不符合要求
return false;
stack st;
for(int i = 0;i < s.size(); i++)
{
if(s[i] == '(')//如果是左括号进右括号
st.push(')');
else if (s[i] == '{') st.push('}');//如果是左大括号,入右大括号
else if (s[i] == '[') st.push(']');//如果是左中括号,入右中括号
// 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false
// 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return false
else if (st.empty() || st.top() != s[i]) return false;//如果以上括号都不是,证明不用入了,需要进行判断,如果这个已经是空了证明没有能和这个匹配的,所以返回假,还有如果栈顶和右括号不匹配也返回假
else st.pop(); // st.top() 与 s[i]相等,栈弹出元素,能运行到这,证明判断右括号匹配且里面不为空,直接把栈顶出栈。
}
return st.empty();
}
};
力扣题目链接(opens new window)
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:"abbaca"
输出:"ca"
解释:例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
本题要删除相邻相同元素,相对于20. 有效的括号 (opens new window)来说其实也是匹配问题,20. 有效的括号 是匹配左右括号,本题是匹配相邻元素,最后都是做消除的操作。
本题也是用栈来解决的经典题目。
那么栈里应该放的是什么元素呢?
我们在删除相邻重复项的时候,其实就是要知道当前遍历的这个元素,我们在前一位是不是遍历过一样数值的元素,那么如何记录前面遍历过的元素呢?
所以就是用栈来存放,那么栈的目的,就是存放遍历过的元素,当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。
然后再去做对应的消除操作。 如动画所示:
从栈中弹出剩余元素,此时是字符串ac,因为从栈里弹出的元素是倒序的,所以再对字符串进行反转一下,就得到了最终的结果。
class Solution {
public:
string removeDuplicates(string S) {
stack st;
for(char s: S)
{
if(st.empty() || s != st.top())//如果栈为空,或者S中的元素不等于栈顶元素,把s入栈
st.push(s);
else//栈里有元素,并且s等于栈顶元素
st.pop();//匹配上了出栈
}
string result = "";//定义一个字符串存放结果
while(!st.empty())//如果栈中有元素,证明是剩下的,不能匹配的
{
result +=st.top();//string重载了+号,把st的栈顶元素放入result中
st.pop();//出栈
}
reverse(result.begin(), result.end());//翻转结果,因为栈出来是逆序
return result;//返回结果
}
};
for(char s : S)
for (char c : s)这种循环方式的使用
基于范围的for循环(c++11)支持
这是c++11中新增的一种循环的写法,对数组(或容器类)的每个元素都执行相同的元素,
如: double prices[5] = {4.99,5.99,6.99,7.99,8.99};
for(double x:prices)
cout << x << endl;
其中,x最初表示数组prices的第一个元素,显示第一个元素后,不断执行循环,而x依次表示数组的其他元素。
力扣题目链接(opens new window)
根据 逆波兰表示法,求表达式的值。
有效的运算符包括 + , - , * , / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。 给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入: ["2", "1", "+", "3", " * "]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入: ["4", "13", "5", "/", "+"]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入: ["10", "6", "9", "3", "+", "-11", " * ", "/", " * ", "17", "+", "5", "+"]
输出: 22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
逆波兰表达式:是一种后缀表达式,所谓后缀就是指运算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到运算符则取出栈顶两个数字进行计算,并将结果压入栈中。
class Solution {
public:
int evalRPN(vector& tokens) {
stack st;
for(int i =0 ;i < tokens.size(); i++)
{
if(tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {
long long num1 = st.top();
st.pop();
long long num2 = st.top();
st.pop();
if (tokens[i] == "+") st.push(num2 + num1);
if (tokens[i] == "-") st.push(num2 - num1);
if (tokens[i] == "*") st.push(num2 * num1);
if (tokens[i] == "/") st.push(num2 / num1);
}
else
{
st.push(stoll(tokens[i]));
}
}
int result = st.top();
st.pop();
return result;
}
};
2、stoll()
此函数将在函数调用中作为参数提供的字符串转换为long long int。它解析str并将其内容解释为指定基数的整数,并将其作为long long int类型的值返回。
句法:
long long int stoll(const string&str,size_t * idx = 0,int base = 10)
参数:该函数接受三个参数,如下所述:
str:此参数指定带有整数的String对象。
idx:此参数指定指向size_t类型的对象的指针,该对象的值由功能设置为数值后str中下一个字符的位置。此参数也可以是空指针,在这种情况下,将不使用该参数。
base:此参数指定数字基数,以确定用于解释字符的数字系统。如果基数为0,则它使用的基数由序列中的格式确定。默认基数为10。
返回值:该函数将转换后的整数作为long long int类型的值返回