SparkSql读取外部Hql文件的公共类开发

SparkSql读取外部Hql文件的公共类开发

Spark SQL 与 Hive 的区别简介

一、什么是 Spark SQL? (官方定义)

Spark SQL
  • A Spark module for structured data processing(known set of fields for each record - schema) ;
  1. Spark SQL是Spark中专门用来处理结构化数据(每一行数据都遵循Schema信息 —— 建表时表的字段及其类型)的一个模块;
  • Provides DataFrames/Dataset as an abstraction for distributed data processing ;
  1. 提供了 DataFrame/Dataset 的对分布式数据处理的基本抽象;
  • Acts as a distributed SQL engine ;
  1. 其实之上是一个分布式的 SQL 引擎。

二、什么是 Hive? (官方定义)

Hive
  • The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL.
  1. 数据仓库,能使用 SQL 读取、写入和管理存在于分布式存储架构上的大数据集;
  • Structure can be projected onto data already in storage.
  1. 结构可以映射到已经存储的数据上;
  • A command line tool and JDBC driver are provided to connect users to Hive.
  1. 用户连接 Hive 可以使用命令行工具和 JDBC 驱动。

三、两者的区别

都支持ThriftServer服务,为JDBC提供解决方案,区别如下:

Spark SQL

=> 是Spark的一个库文件;

=> Spark SQL 元数据可有可无;

=> Spark SQL 中 schema 是自动推断的;

=> 支持标准 SQL 语句,也支持 HQL 语句等(可以用普通话、方言来对比理解);

=> 从开发角度来讲,即支持SQL方式开发,也支持HQL开发,还支持函数式编程(DSL)实现SQL语句。

Hive

=> 是一个框架;

=> Hive中必须有元数据,一般由 MySql 管理,必须开启 metastore 服务;

=> Hive 中在建表时必须明确使用 DDL 声明 schema;

=> 只支持 HQL 语句。

Hive:处理海量数据,比如一个月、一个季度、一年的数据量,依然可以处理,虽然很慢;

Spark SQL:这种情况下 Spark SQL 不支持,无法处理;所以在企业中,Hive 和 Spark SQL 能够共存,互为弥补。


Spark on Hive 环境配置

搭建准备

① 准备 HadoopHive 环境

Hadoop 介绍及集群搭建参考

Hive 搭建参考

② 准备 Spark on Yarn 环境

环境搭建-Spark on YARN

③ 启动 Hivemetastore 服务

# 进入 Hive 安装目录
cd /opt/server/hive-2.1.0
nohup bin/hive --service metastore &

配置修改

修改 hive-site.xml 配置文件:在 3 台 Spark 服务器上都操作

# 进入 Spark 安装目录
cd /opt/server/spark/conf

# 增加 hive-site.xml 配置文件
vim hive-site.xml
# 增加以下配置信息


<configuration>
  
    <property>
      <name>hive.metastore.warehouse.dirname>
      <value>/user/hive/warehousevalue>
    property>
  
    <property>
      <name>hive.metastore.localname>
      <value>falsevalue>
    property>
  
    <property>
      <name>hive.metastore.urisname>
      <value>thrift://node1:9083value>
    property>
  
configuration>

启动及测试

① 启动

# 第一种: Local 方式启动 Spark
cd /opt/server/spark
bin/spark-sql --master local[2] --conf spark.sql.shuffle.partitions=2

# 第二种:Standalone 方式启动 Spark
cd /opt/server/spark
bin/spark-sql --master spark://node1:7077 --executor-memory 512m --total-executor-cores 1

② 测试

show databases;
show tables;

Hive SQL 的交互方式

Distributed SQL Engine - Spark 2.4.5 Documentation (apache.org)

开启 Spark 的 ThriftServer

Spark Thrift Server 将 Spark Applicaiton 当做一个服务运行,提供 Beeline 客户端和JDBC方式访问,与 Hive 中 HiveServer2 服务一样的

① 启动 ThriftServer 服务

# 进入 Spark 目录
cd /opt/server/spark

# 启动服务
sbin/start-thriftserver.sh \
--hiveconf hive.server2.thrift.port=10001 \
--hiveconf hive.server2.thrift.bind.host=node1 \
--master local[2]

# 停止使用
sbin/stop-thriftserver.sh

② 查看 WEB-UI 界面

http://node1:4040/jobs/

③ 使用 SparkSQLbeeline 客户端命令行连接 ThriftServer

# 进入 Spark 目录
cd /opt/server/spark
# 启动 beeline
bin/beeline
# 输入连接信息
!connect jdbc:hive2://node1:10001
# 依次输入用户名和密码

spark-sql执行hivesql

spark提交命令有spark-shell、spark-submit、spark-sql。我们执行hive命令一般都是

hive -e 'select * from xx'
或者 
hive -f /home/hadoop/xx.hql -d dt=2018-01-01

但是hive底层使用mr执行速度实在不忍直视,安装hive on spark又太麻烦了,怎么办呢?其实,spark也有基于hive执行sql脚本的提交任务方式,就是spark-sql

spark-sql --master yarn-client -e 'select * from xx'
spark-sql --master yarn-client  dt=2018-01-01 -f '/home/hadoop/xx.hql'

不过spark对机器内存性能要求很高,容易执行失败,如果spark-sql执行失败,出现内存溢出的情况,还是使用hive比较稳定。这里spark-sql能查询到hive表是怎么配置的呢?只需要把hive-sit.xml复制到spark安装目录的conf目录下即可。
spark-sql缺点:执行语句insert overwrite table xx…在结果目录会有大量小文件,容易内存溢出执行失败

spark提交任务的三种的方法

Spark Job的方式主要有三种:

**1、**使用spark 自带的spark-submit工具提交任务

通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这种方式提交的,提交命令示例如下:
./spark-submit --class com.learn.spark.SimpleApp --master yarn --deploy-mode client --driver-memory 2g --executor-memory 2g --executor-cores 3 …/spark-demo.jar
参数含义就不解释了,请参考官网资料。

2、通过JAVA API编程的方式提交有两种方式

提交方式是已JAVA API编程的方式提交,这种方式不需要使用命令行,直接可以在IDEA中点击Run 运行包含Job的Main类就行,Spark 提供了以SparkLanuncher 作为唯一入口的API来实现。这种方式很方便(试想如果某个任务需要重复执行,但是又不会写linux 脚本怎么搞?我想到的是以JAV API的方式提交Job, 还可以和Spring整合,让应用在tomcat中运行),官网的示例:http://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/launcher/package-summary.html

spark-launcher_2.11-2.3.4.jar 下载地址:https://mvnrepository.com/artifact/org.apache.spark/spark-launcher_2.11/2.3.4

根据官网的示例,通过JAVA API编程的方式提交有两种方式:

**2.1、方式一:**new SparkLauncher().startApplicaiton(监听器) 返回一个SparkAppHandler,并(可选)传入一个监听器

调用SparkLanuncher实例的startApplication方法,但是这种方式在所有配置都正确的情况下使用运行都会失败的,原因是startApplication方法会调用LauncherServer启动一个进程与集群交互,这个操作貌似是异步的,所以可能结果是main主线程结束了这个进程都没有起起来,导致运行失败。解决办法是调用new SparkLanuncher().startApplication后需要让主线程休眠一定的时间后者是使用下面的例子:

package com.xxx.utils;
 
/**
 * @author yyz
 * @class LanuncherAppV
 * @date 2021/04/22 15:27
 * 第一种是调用SparkLanuncher实例的startApplication方法,但是这种方式在所有配置都正确的情况下使用运行都会失败的,原因是startApplication方法会调用LauncherServer启动一个进程与集群交互,这个操作貌似是异步的,
 * 所以可能结果是main主线程结束了这个进程都没有起起来,导致运行失败。解决办法是调用new SparkLanuncher().startApplication后需要让主线程休眠一定的时间后者是使用下面的例子:
 * 注意:如果部署模式是cluster,但是代码中有标准输出的话将看不到,需要把结果写到HDFS中,如果是client模式则可以看到输出。
 **/
 
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.spark.launcher.SparkAppHandle;
import org.apache.spark.launcher.SparkLauncher;
 
import java.io.IOException;
import java.util.HashMap;
import java.util.concurrent.CountDownLatch;
 
public class LanuncherAppV {
    private static Log log = LogFactory.getLog(LanuncherAppV.class);
    public static void main(String[] args) throws IOException, InterruptedException {
 
        HashMap env = new HashMap();
        //这两个属性必须设置
        env.put("HADOOP_CONF_DIR", "/opt/soft/client/hadoop/xxx/etc/hadoop");
        env.put("JAVA_HOME", "/opt/soft/jdk");
        //可以不设置
        //env.put("YARN_CONF_DIR","");
        log.info("init spark env complete");
        CountDownLatch countDownLatch = new CountDownLatch(10);
        //这里调用setJavaHome()方法后,JAVA_HOME is not set 错误依然存在
        SparkAppHandle handler = new SparkLauncher(env)
                .setSparkHome("/opt/soft/client/spark_install_home")
                .setAppResource("/opt/soft/client/spark/xjprc-hadoop-spark2.3/spark_install_home/examples/jars/spark-examples_xxxxx.jar")
                .setMainClass("org.apache.spark.examples.SparkPi")
                .setMaster("local")
                .setAppName("LanuncherAppV_yyz")
//                    .setMaster("yarn")
//                    .setDeployMode("cluster")
//                    .setConf("spark.app.id", "")
//                    .setConf("spark.driver.memory", "2g")
//                    .setConf("spark.akka.frameSize", "")
//                    .setConf("spark.executor.memory", "1g")
//                    .setConf("spark.executor.instances", "")
//                    .setConf("spark.executor.cores", "")
//                    .setConf("spark.default.parallelism", "")
//                    .setConf("spark.driver.allowMultipleContexts", "true")
                .setVerbose(true).startApplication(new SparkAppHandle.Listener() {
                    //这里监听任务状态,当任务结束时(不管是什么原因结束),isFinal()方法会返回true,否则返回false
                    @Override
                    public void stateChanged(SparkAppHandle sparkAppHandle) {
                        if (sparkAppHandle.getState().isFinal()) {
                            countDownLatch.countDown();
                        }
                        System.out.println("state:" + sparkAppHandle.getState().toString());
                        System.out.println("AppId    " + sparkAppHandle.getAppId());
                    }
 
                    @Override
                    public void infoChanged(SparkAppHandle sparkAppHandle) {
                        System.out.println("Info:" + sparkAppHandle.getState().toString());
                        System.out.println("AppId    " + sparkAppHandle.getAppId());
                    }
                });
        log.info("start spark SparkLauncher ……");
 
        System.out.println("The task is executing, please wait ....");
        //线程等待任务结束
        countDownLatch.await();
        System.out.println("The task is finished!");
 
        log.info("finish spark SparkLauncher task");
 
    }
}

注意:如果部署模式是cluster,但是代码中有标准输出的话将看不到,需要把结果写到HDFS中,如果是client模式则可以看到输出。

调用命令如下:

[work@hadoop01 testSparkLanuncher]$ java -Djava.ext.dirs=/home/work/xxx/project/testSparkLanuncher -cp TestJavaSpark-1.0-SNAPSHOT-jar-with-dependencies.jar:spark-launcher_2.11-2.3.4.jar com.xxx.utils.LanunchAppV
或者
[work@hadoop01 testSparkLanuncher]$ java -classpath /home/work/xxx/project/testSparkLanuncher/TestJavaSpark-1.0-SNAPSHOT-jar-with-dependencies.jar:/home/work/xxx/project/testSparkLanuncher/spark-launcher_2.11-2.3.4.jar com.xxx.utils.LanunchAppV
 

2.2、方式二:new SparkLauncher().launch() 直接启动一个Process

通过SparkLanuncher.lanunch()方法获取一个进程,然后调用进程的process.waitFor()方法等待线程返回结果,但是使用这种方式需要自己管理运行过程中的输出信息,比较麻烦,好处是一切都在掌握之中,即获取的输出信息和通过命令提交的方式一样,很详细,实现如下:

package com.xxx.utils;
 
/**
 * @author yyz
 * @class LauncherApp
 * @date 2021/04/23 10:30
 * 通过SparkLanuncher.lanunch()方法获取一个进程,然后调用进程的process.waitFor()方法等待线程返回结果,但是使用这种方式需要自己管理运行过程中的输出信息,比较麻烦,需要自定义InputStreamReaderRunnable类实现
 * 好处是一切都在掌握之中,即获取的输出信息和通过命令提交的方式一样,很详细,实现如下:
 **/
 
import org.apache.spark.launcher.SparkLauncher;
 
import java.io.IOException;
import java.util.HashMap;
 
public class LauncherApp {
 
    public static void main(String[] args) throws IOException, InterruptedException {
 
        HashMap env = new HashMap();
        //这两个属性必须设置
          env.put("HADOOP_CONF_DIR", "/opt/soft/client/hadoop/xxx/etc/hadoop");
        env.put("JAVA_HOME", "/opt/soft/jdk");
        //env.put("YARN_CONF_DIR","");
 
        SparkLauncher handle = new SparkLauncher(env)
                .setSparkHome("/opt/soft/client/spark_install_home")
                .setAppResource("/opt/soft/client/spark/xjprc-hadoop-spark2.3/spark_install_home/examples/jars/spark-examples_xxxxx.jar")
                .setMainClass("org.apache.spark.examples.SparkPi")
                .setMaster("local")
                .setAppName("LauncherApp_yyz")
//                .setMaster("yarn")
//                .setDeployMode("cluster")
//                .setConf("spark.app.id", "")
//                .setConf("spark.driver.memory", "2g")
//                .setConf("spark.akka.frameSize", "")
//                .setConf("spark.executor.memory", "1g")
//                .setConf("spark.executor.instances", "")
//                .setConf("spark.executor.cores", "")
//                .setConf("spark.default.parallelism", "")
//                .setConf("spark.driver.allowMultipleContexts","true")
                .setVerbose(true);
 
        Process process = handle.launch();
        InputStreamReaderRunnable inputStreamReaderRunnable = new InputStreamReaderRunnable(process.getInputStream(), "input");
        Thread inputThread = new Thread(inputStreamReaderRunnable, "LogStreamReader input");
        inputThread.start();
 
        InputStreamReaderRunnable errorStreamReaderRunnable = new InputStreamReaderRunnable(process.getErrorStream(), "error");
        Thread errorThread = new Thread(errorStreamReaderRunnable, "LogStreamReader error");
        errorThread.start();
 
        System.out.println("Waiting for finish...");
        int exitCode = process.waitFor();
        System.out.println("Finished! Exit code:" + exitCode);
 
    }
}

使用的自定义InputStreamReaderRunnable类实现如下:

package com.xxx.utils;
 
/**
 * @author yyz
 * @class InputStreamReaderRunnable
 * @date 2021/04/23 10:31
 * 使用的自定义InputStreamReaderRunnable类实现如下:
 **/
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
 
public class InputStreamReaderRunnable implements Runnable {
    private BufferedReader reader;
    private String name;
 
    public InputStreamReaderRunnable(InputStream is, String name) {
        this.reader = new BufferedReader(new InputStreamReader(is));
        this.name = name;
    }
 
    public void run() {
 
        System.out.println("InputStream " + name + ":");
        try {
            String line = reader.readLine();
            while (line != null) {
                System.out.println(line);
                line = reader.readLine();
            }
            reader.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

调度方式:

[work@hadoop01 testSparkLanuncher]$ java -Djava.ext.dirs=/home/work/xxx/project/testSparkLanuncher -cp TestJavaSpark-1.0-SNAPSHOT.jar:spark-launcher_2.11-2.3.4.jar com.xxx.utils.LauncherApp 
 
或者
 
[work@hadoop01 testSparkLanuncher]$ java -classpath /home/work/xxx/project/testSparkLanuncher/TestJavaSpark-1.0-SNAPSHOT-jar-with-dependencies.jar:/home/work/xxx/project/testSparkLanuncher/spark-launcher_2.11-2.3.4.jar com.xxx.utils.LauncherApp
 

2.3、总结

老版本

老版本任务提交是基于启动本地进程,执行脚本spark-submit xxx ** 的方式做的。其中一个关键的问题就是获得提交Spark任务的Application-id,因为这个id是跟任务状态的跟踪有关系的。如果你的资源管理框架用的是yarn,应该知道每个运行的任务都有一个applicaiton_id,这个id的生成规则是:

appplication_时间戳_数字

老版本的spark通过修改SparkConf参数spark.app.id就可以手动指定id,新版本的代码是直接读取的taskBackend中的applicationId()方法,这个方法具体的实现是根据实现类来定的。在yarn中,是通过Yarn的YarnClusterSchedulerBackend实现的。

感兴趣的同学可以看一下,生成applicaiton_id的逻辑在hadoop-yarn工程的ContainerId中定义。

总结一句话就是,想要自定义id,甭想了!!!!

于是当时脑袋瓜不灵光的我,就想到那就等应用创建好了之后,直接写到数据库里面呗。怎么写呢?

  • 我事先生成一个自定义的id,当做参数传递到spark应用里面;
  • 等spark初始化后,就可以通过sparkContext取得对应的application_id以及url
  • 然后再driver连接数据库,插入一条关联关系

新版本

还是归结于互联网时代的信息大爆炸,我看到群友的聊天,知道了SparkLauncer这个东西,调查后发现他可以基于Java代码自动提交Spark任务。SparkLauncher支持两种模式:

  • new SparkLauncher().launch() 直接启动一个Process,效果跟以前一样
  • new SparkLauncher().startApplicaiton(监听器) 返回一个SparkAppHandler,并(可选)传入一个监听器

当然是更倾向于第二种啦,因为好处很多:

  • 自带输出重定向(Output,Error都有,支持写到文件里面),超级爽的功能
  • 可以自定义监听器,当信息或者状态变更时,都能进行操作(对我没啥用)
  • 返回的SparkAppHandler支持 暂停、停止、断连、获得AppId、获得State等多种功能,我就想要这个!!!!

2.4、代码示例:

package com.xxx.utils;
 
/**
 * @author yyz
 * @class Person
 * @date 2021/04/23 17:52
 **/
public class Person{
    private String name;
    private int age;
    private  String sex;
 
    public Person(String name, int age, String sex) {
        this.name = name;
        this.age = age;
        this.sex = sex;
    }
 
    public String getName() {
        return name;
    }
 
    public void setName(String name) {
        this.name = name;
    }
 
    public int getAge() {
        return age;
    }
 
    public void setAge(int age) {
        this.age = age;
    }
 
    public String getSex() {
        return sex;
    }
 
    public void setSex(String sex) {
        this.sex = sex;
    }
 
}
 
 
 
package com.xxx.utils;
 
/**
 * @author yyz
 * @class HelloWorld
 * @date 2021/04/23 17:07
 **/
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.SparkSession;
import java.util.ArrayList;
import java.util.List;
 
public class HelloWorld {
    private static Log log = LogFactory.getLog(HelloWorld.class);
 
    public static void main(String[] args) throws InterruptedException {
 
        SparkSession spark = SparkSession.builder().master("local[2]")
                .appName("HelloWorld_from_yyz")
                .config("spark.sql.warehouse.dir", "/tmp")
                .enableHiveSupport()
                .getOrCreate();
 
 
        List<Person> persons = new ArrayList<>();
 
        persons.add(new Person("zhangsan", 22, "male"));
        persons.add(new Person("lisi", 25, "male"));
        persons.add(new Person("wangwu", 23, "female"));
 
 
        Dataset ds= spark.createDataFrame(persons, Person.class);
        ds.show(false);
        log.info("数据总条数为:"+ds.count());
 
        spark.close();
 
    }
}
 
 
package com.xxx.utils;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.spark.launcher.SparkAppHandle;
import org.apache.spark.launcher.SparkLauncher;
 
import java.io.IOException;
/**
 * @author yyz
 * @class Launcher
 * @date 2021/04/23 17:13
 **/
public class Launcher {
    private static Log log = LogFactory.getLog(Launcher.class);
 
    public static void main(String[] args) throws IOException {
        SparkAppHandle handler = new SparkLauncher()
                .setAppName("hello-world")
//              .setSparkHome(args[0])
                .setSparkHome("/opt/soft/client/spark_install_home")
                .setMaster(args[0])
//              .setDeployMode("client")
                .setConf("spark.yarn.job.owners",args[1])
                .setConf("spark.driver.memory", "2g")
                .setConf("spark.executor.memory", "1g")
                .setConf("spark.executor.cores", "3")
                .setAppResource("/home/work/xxx/project/testSparkLanuncher/TestJavaSpark-1.0-SNAPSHOT.jar")
                //此处应写类的全限定名
                .setMainClass("com.xxx.utils.HelloWorld")
                .addAppArgs("I come from Launcher")
                .startApplication(new SparkAppHandle.Listener(){
                    @Override
                    public void stateChanged(SparkAppHandle handle) {
                        System.out.println(handle.getAppId()+": **********  state  changed  **********: "+handle.getState().toString());
                        log.info(handle.getAppId()+": **********  state  changed  **********: "+handle.getState().toString());
                    }
 
                    @Override
                    public void infoChanged(SparkAppHandle handle) {
                        System.out.println(handle.getAppId()+": **********  info  changed  **********: "+handle.getState().toString());
                        log.info(handle.getAppId()+": **********  info  changed  **********: "+handle.getState().toString());
                    }
                });
 
 
        while(!"FINISHED".equalsIgnoreCase(handler.getState().toString()) && !"FAILED".equalsIgnoreCase(handler.getState().toString())){
            System.out.println("id    "+handler.getAppId());
            System.out.println("state "+handler.getState());
 
            System.out.println(handler.getAppId()+": **********  info  changed  **********: "+handler.getState().toString());
            log.info(handler.getAppId()+": **********  info  changed  **********: "+handler.getState().toString());
 
            try {
                Thread.sleep(100000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

打包完成后上传到部署Spark的服务器上。由于Spark Launcher所在的类引用了SparkLauncher,所以还需要把这个jar也上传到服务器上。

spark-launcher_2.11-2.3.4.jar 下载地址:https://mvnrepository.com/artifact/org.apache.spark/spark-launcher_2.11/2.3.4

综上,我们需要的是:

  • 一个自定义的Jar,里面包含Spark应用和SparkLauncher类
  • 一个SparkLauncher的jar,spark-launcher_2.11-2.2.0.jar 版本根据你自己的来就行
  • 一个当前目录的路径
  • 一个SARK_HOME环境变量指定的目录

然后执行命令启动测试:

[work@hadoop01 testSparkLanuncher]$ java -Djava.ext.dirs=/home/work/xxx/project/testSparkLanuncher -cp TestJavaSpark-1.0-SNAPSHOT.jar:spark-launcher_2.11-2.3.4.jar com.xxx.utils.Launcher local test_onwer
或者
[work@hadoop01 testSparkLanuncher]$ java -classpath /home/work/xxx/project/testSparkLanuncher/TestJavaSpark-1.0-SNAPSHOT-jar-with-dependencies.jar:/home/work/xxx/project/testSparkLanuncher/spark-launcher_2.11-2.3.4.jar com.xxx.utils.Launcher local test_onwer

说明:

  1. -Djava.ext.dirs 设置当前目录为java类加载的目录
  2. 传入两个参数,一个是启动模式,一个是 程序owner

观察发现成功启动运行了:

[work@hadoop01 testSparkLanuncher]$ java -Djava.ext.dirs=/home/work/xxx/project/testSparkLanuncher -cp TestJavaSpark-1.0-SNAPSHOT.jar:spark-launcher_2.11-2.3.4.jar com.xxx.utils.Launcher local test_onwer
id    null
state UNKNOWN
null: **********  info  changed  **********: UNKNOWN
2021-04-25 15:18:41,927  INFO Launcher:51 - null: **********  info  changed  **********: UNKNOWN
Apr 25, 2021 3:18:42 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: OpenJDK 64-Bit Server VM warning: ignoring option MaxPermSize=256m; support was removed in 8.0
Apr 25, 2021 3:18:42 PM org.apache.spark.launcher.OutputRedirector redirect
……
INFO: 2021-04-25 15:18:43,834 INFO util.Utils: Successfully started service 'SparkUI' on port 4040.
……
INFO: 2021-04-25 15:18:43,943 INFO scheduler.FIFOSchedulableBuilder: Adding pool poolName:system_reserve maxSize:0 schedulingMode:FIFO maxConcurrency:2147483647
Apr 25, 2021 3:18:43 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:18:43,944 INFO scheduler.FIFOSchedulableBuilder: Adding pool poolName:user maxSize:2147483645 schedulingMode:FIFO maxConcurrency:2147483647
null: **********  state  changed  **********: CONNECTED
2021-04-25 15:18:43,945  INFO Launcher:35 - null: **********  state  changed  **********: CONNECTED
Apr 25, 2021 3:18:43 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:18:43,956 INFO executor.Executor: Starting executor ID driver on host localhost
local-1619335123924: **********  info  changed  **********: CONNECTED
2021-04-25 15:18:43,993  INFO Launcher:41 - local-1619335123924: **********  info  changed  **********: CONNECTED
local-1619335123924: **********  state  changed  **********: RUNNING
2021-04-25 15:18:43,995  INFO Launcher:35 - local-1619335123924: **********  state  changed  **********: RUNNING
……
Apr 25, 2021 3:19:00 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: +---+--------+------+
INFO: |age|name    |sex   |
INFO: +---+--------+------+
INFO: |22 |zhangsan|male  |
INFO: |25 |lisi    |male  |
INFO: |23 |wangwu  |female|
INFO: +---+--------+------+
INFO:Apr 25, 2021 3:19:00 PM org.apache.spark.launcher.OutputRedirector redirect
……
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,116 INFO utils.HelloWorld: 数据总条数为:3
INFO: 2021-04-25 15:19:01,122 INFO status.AppStatusListener: Write local-1619335123924 with attempts: success...
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
……
local-1619335123924: **********  state  changed  **********: FINISHED
2021-04-25 15:19:01,160  INFO Launcher:35 - local-1619335123924: **********  state  changed  **********: FINISHED
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,164 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,171 INFO memory.MemoryStore: MemoryStore cleared
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,171 INFO storage.BlockManager: BlockManager stopped
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,172 INFO storage.BlockManagerMaster: BlockManagerMaster stopped
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,174 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,177 INFO spark.SparkContext: Successfully stopped SparkContext
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,179 INFO util.ShutdownHookManager: Shutdown hook called
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,180 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-be25cfa7-9b93-4214-b6a4-ad81d3d4122b
Apr 25, 2021 3:19:01 PM org.apache.spark.launcher.OutputRedirector redirect
INFO: 2021-04-25 15:19:01,180 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-4c8ab12b-5835-4484-a63a-3d010a0e2559

这样就实现了基于Java应用提交Spark任务,并获得其Appliation_id和状态进行定位跟踪的需求了。

3、通过yarn的rest api的方式提交

第三种方式是通过yarn的rest api的方式提交(不太常用但在这里也介绍一下):

Post请求示例: * http:///ws/v1/cluster/apps

请求所带的参数列表:

Item Data Type Description
application-id string The application id
application-name string The application name
queue string The name of the queue to which the application should be submitted
priority int The priority of the application
am-container-spec object The application master container launch context, described below
unmanaged-AM boolean Is the application using an unmanaged application master
max-app-attempts int The max number of attempts for this application
resource object The resources the application master requires, described below
application-type string The application type(MapReduce, Pig, Hive, etc)
keep-containers-across-application-attempts boolean Should YARN keep the containers used by this application instead of destroying them
application-tags object List of application tags, please see the request examples on how to speciy the tags
log-aggregation-context object Represents all of the information needed by the NodeManager to handle the logs for this application
attempt-failures-validity-interval long The failure number will no take attempt failures which happen out of the validityInterval into failure count
reservation-id string Represent the unique id of the corresponding reserved resource allocation in the scheduler
am-black-listing-requests object Contains blacklisting information such as “enable/disable AM blacklisting” and “disable failure threshold”

参考:https://www.cnblogs.com/itboys/p/9998666.html
https://www.cnblogs.com/itboys/p/9958933.html

spark-submit提交任务及参数说明

spark-submit 可以提交任务到 spark 集群执⾏,也可以提交到 hadoop 的 yarn 集群执⾏。

  1. 例⼦
    ⼀个最简单的例⼦,部署 spark standalone 模式后,提交到本地执⾏。
./bin/spark-submit \
--master spark://localhost:7077 \
examples/src/main/python/pi.py

如果部署 hadoop,并且启动 yarn 后,spark 提交到 yarn 执⾏的例⼦如下。
注意,spark 必须编译成⽀持 yarn 模式,编译 spark 的命令为:
build/mvn -Pyarn -Phadoop-2.x -Dhadoop.version=2.x.x -DskipTests clean package其中, 2.x 为 hadoop 的版本号。编译完成后,可执⾏下⾯的命令,提交任务到 hadoop yarn 集群执⾏。

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 1 \
--queue thequeue \
examples/target/scala-2.11/jars/spark-examples*.jar 10
  1. spark-submit 详细参数说明

参数名 参数说明

--master master 的地址,提交任务到哪⾥执⾏,例如 spark://host:port, yarn, local

--deploy-mode 在本地 (client) 启动 driver 或在 cluster 上启动,默认是 client

--class 应⽤程序的主类,仅针对 java 或 scala 应⽤
--name 应⽤程序的名称

--jars ⽤逗号分隔的本地 jar 包,设置后,这些 jar 将包含在 driver 和 executor 的 classpath 下
--packages 包含在driver 和executor 的 classpath 中的 jar 的 maven 坐标

--exclude-packages 为了避免冲突 ⽽指定不包含的 package
--repositories 远程 repository

--conf PROP=VALUE

指定 spark 配置属性的值,
例如 -conf spark.executor.extraJavaOptions="-XX:MaxPermSize=256m"

--properties-file 加载的配置⽂件,默认为 conf/spark-defaults.conf
--driver-memory Driver内存,默认 1G

--driver-java-options 传给 driver 的额外的 Java 选项

--driver-library-path 传给 driver 的额外的库路径

--driver-class-path 传给 driver 的额外的类路径
--driver-cores Driver 的核数,默认是1。在 yarn 或者 standalone 下使⽤

--executor-memory 每个 executor 的内存,默认是1G

--total-executor-cores 所有 executor 总共的核数。仅仅在 mesos 或者 standalone 下使⽤

--num-executors 启动的 executor 数量。默认为2。在 yarn 下使⽤

--executor-core 每个 executor 的核数。在yarn或者standalone下使⽤

sparkSql 直接执行外部 sql/hql文件

yarn-client模式,local模式,配置文件直接在本地就可以直接运行了。

​ yarn-cluster在读取配置文件的时候让运维兄弟在yarn的nodeManager所有计算节的磁盘上挂载了一个hdfs共享盘(resourceManager节点上没挂),直接把配置文件和sql文件丢进去,直接cluster模式跑就和client,local模式一样。

pom文件

=======pom文件如下=


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>hx.examplegroupId>
    <artifactId>sparkDwdFilterartifactId>
    <version>1.0-SNAPSHOTversion>

    <properties>
        <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8project.reporting.outputEncoding>
        <maven.compiler.encoding>UTF-8maven.compiler.encoding>
        <encoding>UTF-8encoding>


        <hadoop.version>3.0.0-cdh6.3.2hadoop.version>

        <hive.version>2.1.1-cdh6.3.2hive.version>
        <hbase.version>2.1.0-cdh6.3.2hbase.version>
        <scala.version>2.11.12scala.version>
        <spark.version>2.4.0-cdh6.3.2spark.version>



    properties>

    <dependencies>

        <dependency>
            <groupId>junitgroupId>
            <artifactId>junitartifactId>
            <version>4.11version>
            
        dependency>
        
        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>${hadoop.version}version>
            
            <exclusions>
                <exclusion>
                    <groupId>io.nettygroupId>
                    <artifactId>nettyartifactId>
                exclusion>
            exclusions>
        dependency>

        
        <dependency>
            <groupId>io.nettygroupId>
            <artifactId>netty-allartifactId>
            <version>4.1.18.Finalversion>
        dependency>

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-commonartifactId>
            <version>${hadoop.version}version>
        dependency>

        
        <dependency>
            <groupId>org.scala-langgroupId>
            <artifactId>scala-libraryartifactId>
            <version>${scala.version}version>
        dependency>
        
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-sql_2.11artifactId>
            <version>${spark.version}version>
            <exclusions>
                <exclusion>
                    <groupId>com.google.guavagroupId>
                    <artifactId>guavaartifactId>
                exclusion>
            exclusions>
        dependency>
        
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-hive_2.11artifactId>
            <version>${spark.version}version>
        dependency>

        <dependency>
            <groupId>org.apache.hivegroupId>
            <artifactId>hive-hbase-handlerartifactId>
            <version>${hive.version}version>
        dependency>




























        





























        

        





        





        






        <dependency>
            <groupId>log4jgroupId>
            <artifactId>log4jartifactId>
            <version>1.2.15version>
            <exclusions>
                <exclusion>
                    <groupId>javax.jmsgroupId>
                    <artifactId>jmsartifactId>
                exclusion>
                <exclusion>
                    <groupId>com.sun.jdmkgroupId>
                    <artifactId>jmxtoolsartifactId>
                exclusion>
                <exclusion>
                    <groupId>com.sun.jmxgroupId>
                    <artifactId>jmxriartifactId>
                exclusion>
            exclusions>
        dependency>

    dependencies>

    <repositories>
        <repository>
            <id>clouderaid>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/url>
            <releases>
                <enabled>trueenabled>
            releases>
            <snapshots>
                <enabled>falseenabled>
            snapshots>
        repository>





































    repositories>

    <build>
        <sourceDirectory>src/main/javasourceDirectory>

        <plugins>

            <plugin>
                <groupId>net.alchim31.mavengroupId>
                <artifactId>scala-maven-pluginartifactId>
                <version>3.2.2version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compilegoal>
                            <goal>testCompilegoal>
                        goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfilearg>
                                <arg>${project.build.directory}/.scala_dependenciesarg>
                            args>
                        configuration>
                    execution>
                executions>
            plugin>
            <plugin>

                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-shade-pluginartifactId>
                <version>3.1.0version>
                <executions>

                    <execution>

                        <phase>packagephase>
                        <goals>
                            <goal>shadegoal>
                        goals>
                        <configuration>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                            transformers>
                            <relocations>
                                <relocation>
                                    <pattern>org.apache.httppattern>
                                    <shadedPattern>org.apache.myhttpshadedPattern>
                                relocation>
                            relocations>
                            <filters>
                                <filter>
                                    <artifact>*:*artifact>
                                    <excludes>
                                        <exclude>META-INF/maven/**exclude>
                                        <exclude>META-INF/*.SFexclude>
                                        <exclude>META-INF/*.DSAexclude>
                                        <exclude>META-INF/*.RSAexclude>
                                    excludes>
                                filter>
                            filters>
                        configuration>
                    execution>
                executions>
            plugin>

            <plugin>
                <groupId>org.codehaus.mojogroupId>
                <artifactId>exec-maven-pluginartifactId>
                <version>1.2.1version>
                <executions>
                    <execution>
                        <goals>
                            <goal>execgoal>
                        goals>
                    execution>
                executions>
                <configuration>
                    <executable>javaexecutable>
                    <includeProjectDependencies>trueincludeProjectDependencies>
                    <includePluginDependencies>falseincludePluginDependencies>
                    <classpathScope>compileclasspathScope>
                    <mainClass>mainClass>
                configuration>
            plugin>

            
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <configuration>
                    <source>1.8source>
                    <target>1.8target>
                configuration>
            plugin>
        plugins>
    build>

project>

代码1ods层数据清洗落地到dwd层,工具类读取外部Hql

=代码1如下======

package hx.com

import hx.com.constant.PropConstants
import hx.com.util.PropertieUtil
import org.apache.hadoop.security.UserGroupInformation
import org.apache.spark.sql.SparkSession

import java.io.File
import java.util.Properties
import scala.io.{BufferedSource, Source}

/**
 * ods层数据清洗落地到dwd层
 */
object Ods2DwdFilterSql {

  def main(args: Array[String]): Unit = {

    val filePath: String = args(0)


    //读取集群配置文件
    val prop: Properties = PropertieUtil.load("config.properties")

    //本地测试读文件
//    val prop: Properties = PropertieUtil.getProperties("/config.properties")
    System.setProperty("java.security.krb5.conf", prop.getProperty(PropConstants.KRB5_CONF_PATH))
    System.setProperty("HADOOP_USER_NAME", prop.getProperty(PropConstants.HADOOP_USER_NAME))
    System.setProperty("user.name", prop.getProperty(PropConstants.USER_NAME))
    UserGroupInformation.loginUserFromKeytab(
      prop.getProperty(PropConstants.KEYTAB_NAME), prop.getProperty(PropConstants.KEYTAB_FILE_PATH)
    )

    System.out.println(UserGroupInformation.getLoginUser)


    val session: SparkSession = SparkSession.builder()//.master("local[2]")
      .appName("SparkSeesionApp")
      .enableHiveSupport() //支持hive
      .getOrCreate()
//    session.sparkContext.setLogLevel("WARN")

    val sql: String = doFile(filePath)
    val strings: Array[String] = sql.split(";")
    var i = 0;
    strings.foreach(sql=>{
      val startTime: Long = System.currentTimeMillis()
      println("==============第 "+(i+1)+" 次===sql开始=================")
      println(sql)
      session.sql(sql).show()
      val stopTime: Long = System.currentTimeMillis()
      val processTime: Long = (startTime - stopTime) / 1000
      println("===============第 "+(i+1)+" 次==sql结束====耗时=="+processTime+" 秒==========")
      i = i+1
    })

    session.stop()
  }

  //读取外部sql文件文件
  def doFile(fileName: String): String = {
    val file: File = new File(fileName)
    import java.io.FileInputStream
    val stream: FileInputStream = new FileInputStream(file)
    val buff: BufferedSource = Source.fromInputStream(stream,"UTF-8")
    //读取拼装SQL
    val sql: String = buff.getLines().mkString("\n")
    sql
  }


}
// ===================代码1结束===============

PropertieUtil

=====代码2开始=

package hx.com.util;

import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;

public class PropertieUtil {

    public static Properties getProperties(String path){
        Properties prop = new Properties();
        InputStream inputStream = Object.class.getResourceAsStream(path);
        try {
            prop.load(inputStream);
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            try {
                inputStream.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        return prop;
    }

    public static Properties load(String path){
        Properties prop = new Properties();
        try {
            prop.load(new FileInputStream(path));
        } catch (Exception e) {
            e.printStackTrace();
        }
        return prop;
    }
}
// ===================代码2结束===============

conf.proerties

namespace=ods_membership_prd
column_family=cf
krb5_conf_path=/etc/krb5.conf
#krb5_conf_path=D:/workspace/canal-kafka2hbase/src/main/resources/krb5.ini
keytab_file_path=/opt/etl/config/etl_admin.keytab
#keytab_file_path=hdfs://HDFS0525/user/etl_admin/etl_admin.keytab
#keytab_file_path=D:/soft/kerbros/etl_admin.keytab
hadoop_user_name=etl_admin
user_name=etl_admin
[email protected]

使用Spark-submit提交任务封装shell脚本

=====集群上local 启动模式======
#!/bin/bash

if [ $# -eq 1 ];then
        spark-submit --master local[4]  --class hx.com.Ods2DwdFilterSql --files /home/etl_admin/spark/config.properties sparkDwdFilter-1.0-SNAPSHOT.jar $1
else
  echo "Please input command. eg: ./$0 filename.sql(hql)"
fi
=====yarn-client 启动模式=======

#!/bin/bash

if [ $# -eq 1 ];then
        spark-submit \
        --master yarn \
        --deploy-mode client \
        --queue default \
        --driver-memory 2g \
        --num-executors 3 \
        --executor-memory 2g \
        --executor-cores 2 \
        --class hx.com.Ods2DwdFilterSql \
        --files /home/etl_admin/spark/config.properties \
        sparkDwdFilter-1.0-SNAPSHOT.jar /opt/etl/sqlFiles/$1 
else
  echo "Please input command. eg: ./$0 filename.sql(hql)"
fi

=======yarn-cluster 启动模式=======

#!/bin/bash

if [ $# -eq 1 ];then
        spark-submit \
        --master yarn \
        --deploy-mode cluster \
        --queue default \
        --driver-memory 2g \
        --num-executors 3 \
        --executor-memory 2g \
        --executor-cores 2 \
        --class hx.com.Ods2DwdFilterSql \
        --files /home/etl_admin/spark/config.properties \
        sparkDwdFilter-1.0-SNAPSHOT.jar /opt/etl/sqlFiles/$1 
else
  echo "Please input command. eg: ./$0 filename.sql(hql)"
fi
=========================================================

  • 提交任务
/opt/module/spark/bin/spark-submit --class org.example.SparkReadHqlTest  --master lo
cal[2] /opt/jar/SparkReadHql_Test3-1.0-SNAPSHOT.jar  /opt/sql/test_03.sql 2022-03-17

spark-submit传递参数以及任务如何解析参数

1.传参

spark-submit传递参数有两种方式:

  1. –conf k1=v1 --conf k2=v2
  2. cli args,在jar包后追加

详见官方文档:

SparkSql读取外部Hql文件的公共类开发_第1张图片

2.解析
–conf方式解析:

sparkContext.getConf.get("k1")

cli args方式解析:

  parse(args.toList)

  ... ...

  def parse(list: List[String]): Unit = list match {
    case "--input" :: value :: tail =>
      input = value
      parse(tail)
    case "--output" :: value :: tail =>
      output = value
      parse(tail)
    case "--tmpOutputDir" :: value :: tail =>
      tmpOutputDir = value
      parse(tail)
    case "--sql" :: value :: tail =>
      sql = URLDecoder.decode(value)
      parse(tail)
    case _ :: tail =>
      parse(tail)
    case Nil =>
  }

2. spark submit给main类传递参数

如果想要给main类传递参数需要在submit脚本最后一行
${1}
${2}
即可

参考博客:
https://blog.csdn.net/qq_34009542/article/details/118366474?spm=1001.2014.3001.5502
https://blog.csdn.net/totally123/article/details/117224169

你可能感兴趣的:(#,Hive总结,#,Spark总结,大数据,hive,大数据,spark)