Hudi学习6:安装和基本操作

目录

  • 1 编译 Hudi
    • 1.1 第一步、Maven 安装
    • 1.2 第二步、下载源码包
    • 1.3 第三步、添加Maven镜像
    • 1.4 第四步、执行编译命令
    • 1.5 第五步、Hudi CLI测试
  • 2 环境准备
    • 2.1 安装HDFS
    • 2.2 安装Spark 3.x
  • 3 spark-shell 使用
    • 3.1 启动spark-shell
    • 3.2 模拟数据
    • 3.3 插入数据
    • 3.4 查询数据
    • 3.5 表数据结构
      • 3.5.1 .hoodie文件
      • 3.5.2 数据文件
    • 3.6 Hudi 数据存储概述
      • 3.6.1 Metadata 元数据
      • 3.6.2 Index 索引
      • 3.6.3 Data 数据
  • 4 IDEA 编程开发
    • 4.1 准备环境
    • 4.2 代码结构
    • 4.3 插入数据Insert
    • 4.4 查询数据Query
    • 4.5 更新数据Update
    • 4.6 增量查询Incremental query
    • 4.7 删除数据Delete


1 编译 Hudi

在这里插入图片描述

依据官方提供Spark DataSource数据源,对Hudi表数据进行CRUD操作,快速上手体验Hudi数据湖框架,分别在spark-shell命令行和IDEA中API使用。

Apache Hudi数据湖框架开发时添加MAVEN依赖即可,使用命令管理Hudi表数据,需要下载Hudi 源码包编译,操作步骤如下。

1.1 第一步、Maven 安装

在CentOS 7.7 版本64位操作上下载和安装Maven,直接将Maven软件包解压,然后配置系统环境变量即可。Maven版本为:3.5.4,仓库目录名称:m2,如下图所示:
配置Maven环境变量以后,执行:mvn -version
在这里插入图片描述

1.2 第二步、下载源码包

到Apache 软件归档目录下载Hudi 0.8源码包:http://archive.apache.org/dist/hudi/0.9.0/

wget https://archive.apache.org/dist/hudi/0.9.0/hudi-0.9.0.src.tgz

此外,也可以从Github上下载Hudi源码:

https://github.com/apache/hudi

其中说明如何编译Hudi源码:
在这里插入图片描述

1.3 第三步、添加Maven镜像

由于Hudi编译时,需要下载相关依赖包,需要添加Maven镜像仓库路径,以便下载JAR包。
编辑$MAVEN_HOME/conf/settings.xml文件,添加如下镜像:


    alimaven
    aliyun maven
    http://maven.aliyun.com/nexus/content/groups/public/
    central


    aliyunmaven
    *
    阿里云spring插件仓库
    https://maven.aliyun.com/repository/spring-plugin


    repo2
    Mirror from Maven Repo2
    https://repo.spring.io/plugins-release/
    central


    UK
    UK Central
    http://uk.maven.org/maven2
    central


    jboss-public-repository-group
    JBoss Public Repository Group
    http://repository.jboss.org/nexus/content/groups/public
    central


    CN
    OSChina Central
    http://maven.oschina.net/content/groups/public/
    central


    google-maven-central
    GCS Maven Central mirror Asia Pacific
    https://maven-central-asia.storage-download.googleapis.com/maven2/
    central


    confluent
    confluent maven
    http://packages.confluent.io/maven/
    confluent

1.4 第四步、执行编译命令

上传下载Hudi源码至CentOS系统目录:/root,解压tar包,进入软件包,执行编译命令:

[root@node1 hudi-0.9.0]# mvn clean install -DskipTests -DskipITs -Dscala-2.12 -Dspark3

在这里插入图片描述

编译成功以后,截图如下所示:

1.5 第五步、Hudi CLI测试

编译完成以后,进入$HUDI_HOME/hudi-cli目录,运行hudi-cli脚本,如果可以运行,说明编译成功,截图如下所示:
在这里插入图片描述

2 环境准备

Apache Hudi数据湖框架,提供数据管理功能,底层将数据存储到HDFS分布式可靠文件系统之上,默认支持Spark操作数据(保存数据和读取数据),同时支持Flink操作数据,以及与Hive等框架集成,首先搭建伪分布式大数据环境,方便后续Hudi使用。

2.1 安装HDFS

首先安装部署HDFS分布式文件系统伪分布式集群,方便后续数据保存。
step1、解压软件包
在node1.itcast.cn机器上解压配置HDFS

[root@node1 ~]# cd /export/software/
[root@node1 software]# rz
[root@node1 software]# tar -zxf hadoop-2.7.3.tar.gz -C /export/server/

解压完成以后,创建hadoop软连接,方便后续软件版本升级和管理。

[root@node1 ~]# cd /export/server/
[root@node1 server]# ln -s hadoop-2.7.3 hadoop
[root@node1 server]# ll
lrwxrwxrwx 1 root root 12 Feb 23 21:35 hadoop -> hadoop-2.7.3
drwxr-xr-x 9 root root 149 Nov 4 17:57 hadoop-2.7.3

step2、配置环境变量
在Hadoop中,bin和sbin目录下的脚本、etc/hadoop下的配置文件,有很多配置项都会使用到HADOOP_*这些环境变量。如果仅仅是配置了HADOOP_HOME,这些脚本会从HADOOP_HOME下通过追加相应的目录结构来确定COMMON、HDFS和YARN的类库路径。

HADOOP_HOME:Hadoop软件的安装路径; HADOOP_CONF_DIR:Hadoop的配置文件路径;
HADOOP_COMMON_HOME:Hadoop公共类库的路径; HADOOP_HDFS_HOME:Hadoop HDFS的类库路径;
HADOOP_YARN_HOME:Hadoop YARN的类库路径; HADOOP_MAPRED_HOME:Hadoop
MapReduce的类库路径;

编辑【/etc/profile】文件,命令如下:
vim /etc/profile
添加如下内容:

export HADOOP_HOME=/export/server/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export HADOOP_YARN_HOME=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

执行如下命令生效:

source /etc/profile

备注:三台机器都要配置环境变量,便使之生效,方便后续直接使用命令。

step3、hadoop-env.sh
在Hadoop环境变量脚本配置JDK和HADOOP安装目录,命令和内容如下。
执行命令:

[root@node1 ~]# vim /export/server/hadoop/etc/hadoop/hadoop-env.sh

修改内容如下:

export JAVA_HOME=/export/server/jdk export
HADOOP_HOME=/export/server/hadoop

step4、core-site.xml
配置Hadoop Common模块公共属性,编辑core-site.xml文件,命令和内容如下。
执行命令:

[root@node1 ~]# vim /export/server/hadoop/etc/hadoop/core-site.xml

增加配置内容:

fs.defaultFS hdfs://node1.itcast.cn:8020 hadoop.tmp.dir /export/server/hadoop/datas/tmp hadoop.http.staticuser.user root

创建临时数据目录,命令如下:

[root@node1 ~]# mkdir -p /export/server/hadoop/datas/tmp

step5、hdfs-site.xml
配置HDFS分布式文件系统相关属性,具体命令和内容如下所示:
执行命令:

[root@node1 ~]# vim /export/server/hadoop/etc/hadoop/hdfs-site.xml

增加配置内容:

dfs.namenode.name.dir /export/server/hadoop/datas/dfs/nn dfs.datanode.data.dir /export/server/hadoop/datas/dfs/dn dfs.replication 1 dfs.permissions.enabled false dfs.datanode.data.dir.perm 750

创建数据目录,命令如下:

[root@node1 ~]# mkdir -p /export/server/hadoop/datas/dfs/nn
[root@node1 ~]# mkdir -p /export/server/hadoop/datas/dfs/dn

step6、workers
配置HDFS集群中从节点DataNode所运行机器,,具体命令和内容如下所示:
执行命令:

[root@node1 ~]# vim /export/server/hadoop/etc/hadoop/workers

增加配置内容:

node1.itcast.cn

step7、格式化HDFS
第一次启动HDFS文件之前,先格式HDFS文件系统,命令如下:

[root@node1 ~]# hdfs namenode -format

step8、启动HDFS集群
在node1.itcast.cn上启动HDFS集群服务:NameNode和DataNodes,命令如下:

[root@node1 ~]# hadoop-daemon.sh start namenode [root@node1 ~]#
hadoop-daemon.sh start datanode

查看HDFS WEB UI,地址为:http://node1.itcast.cn:50070/
在这里插入图片描述

2.2 安装Spark 3.x

将编译完成spark安装包【spark-3.0.0-bin-hadoop2.7.tgz】解压至【/export/server】目录:

解压软件包 tar -zxf /export/software/spark-3.0.0-bin-hadoop2.7.tgz -C /export/server/
创建软连接,方便后期升级 ln -s /export/server/spark-3.0.0-bin-hadoop2.7 /export/server/spark

其中各个目录含义如下:
在这里插入图片描述

■ 第一步、安装Scala-2.12.10

解压Scala tar -zxf /export/softwares/scala-2.12.10.tgz -C /export/server/
创建软连接 ln -s /export/server/scala-2.12.10 /export/server/scala
设置环境变量 vim /etc/profile
内容如下:
SCALA_HOME export SCALA_HOME=/export/server/scala export PATH=PATH : PATH:PATH:SCALA_HOME/bin

■ 第二步、修改配置名称

进入配置目录 cd /export/server/spark/conf
修改配置文件名称 mv spark-env.sh.template spark-env.sh

■ 第三步、修改配置文件,$SPARK_HOME/conf/spark-env.sh,增加如下内容:

设置JAVA和SCALA安装目录 JAVA_HOME=/export/server/jdk SCALA_HOME=/export/server/scala
HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop

截图如下:
在这里插入图片描述

本地模式启动spark-shell:

进入Spark安装目录 cd /export/server/spark
启动spark-shell bin/spark-shell --master local[2]

运行成功以后,有如下提示信息:
在这里插入图片描述

将$【SPARK_HOME/README.md】文件上传到HDFS目录【/datas】,使用SparkContext读取文件,命令如下:

上传HDFS文件 hdfs dfs -mkdir -p /datas/ hdfs dfs -put /export/server/spark/README.md /datas
读取文件 val datasRDD = sc.textFile(“/datas/README.md”)
条目数 datasRDD.count
获取第一条数据 datasRDD.first

相关截图如下:
在这里插入图片描述

使用SparkSession对象spark,加载读取文本数据,封装至DataFrame中,截图如下:
在这里插入图片描述

3 spark-shell 使用

首先使用spark-shell命令行,以本地模式(LocalMode:–master local[2])方式运行,模拟产生Trip乘车交易数据,将其保存至Hudi表,并且从Hudi表加载数据查询分析,其中Hudi表数据最后存储在HDFS分布式文件系统上。
启动伪分布式HDFS文件系统命令如下:

[root@node1 ~]# hadoop-daemon.sh start namenode [root@node1 ~]#
hadoop-daemon.sh start datanode

3.1 启动spark-shell

在spark-shell命令行,对Hudi表数据进行操作,需要运行spark-shell命令时,添加相关依赖包,官方命令(针对Spark3及Hudi 0.9)如下:

spark-shell
–master local[2]
–packages org.apache.hudi:hudi-spark3-bundle_2.12:0.9.0,org.apache.spark:spark-avro_2.12:3.0.1

–conf “spark.serializer=org.apache.spark.serializer.KryoSerializer”

上述命令需要联网,基于ivy下载相关jar包到本地,然后加载到CLASSPATH中。其中包含3个jar包:

在这里插入图片描述

此外,可以将上述三个jar包下载下来,上传到虚拟机,命令如下:

[root@node1 ~]# cd /root [root@node1 ~]# mkdir -p hudi-jars

上传JAR包

[root@node1 ~]# rz

在这里插入图片描述

启动spark-shell时,通过–jars指定,具体操作命令如下所示:

/export/server/spark/bin/spark-shell
–master local[2]
–jars /root/hudi-jars/org.apache.hudi_hudi-spark3-bundle_2.12-0.9.0.jar,
/root/hudi-jars/org.apache.spark_spark-avro_2.12-3.0.1.jar,/root/hudi-jars/org.spark-project.spark_unused-1.0.0.jar

–conf “spark.serializer=org.apache.spark.serializer.KryoSerializer”

截图如下所示:

在这里插入图片描述

接下来执行相关代码,保存数据至Hudi表及从Hudi表加载数据。
官方文档:https://hudi.apache.org/docs/spark_quick-start-guide.html

3.2 模拟数据

首先导入Spark及Hudi相关包和定义变量(表的名称和数据存储路径),代码如下:

import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._

val tableName = "hudi_trips_cow"
val basePath = "hdfs://node1.itcast.cn:8020/datas/hudi-warehouse/hudi_trips_cow"
val dataGen = new DataGenerator
其中构建DataGenerator对象,用于模拟生成Trip乘车数据,代码如下:
val inserts = convertToStringList(dataGen.generateInserts(10))

上述代码模拟产生10条Trip乘车数据,为JSON格式,如下所示:
在这里插入图片描述

接下来,将模拟数据List转换为DataFrame数据集,代码如下:

val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))

查看转换后DataFrame数据集的Schema信息,如下所示:

df.printSchema()

在这里插入图片描述

选择相关字段,查看模拟样本数据,具体如下:

df.select(“rider”, “begin_lat”, “begin_lon”, “driver”, “fare”, “uuid”,
“ts”).show(10, truncate=false)

在这里插入图片描述

3.3 插入数据

将上述模拟产生Trip数据,保存到Hudi表中,由于Hudi诞生时基于Spark框架,所以SparkSQL支持Hudi数据源,直接通过format指定数据源Source,设置相关属性保存数据即可,命令如下:

df.write
  .mode(Overwrite)
  .format("hudi")
  .options(getQuickstartWriteConfigs)
  .option(PRECOMBINE_FIELD_OPT_KEY, "ts")
  .option(RECORDKEY_FIELD_OPT_KEY, "uuid")
  .option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath")
  .option(TABLE_NAME, tableName)
  .save(basePath)

采用Scala交互式命令行中paste模式粘贴代码,截图如下:
在这里插入图片描述

其中相关参数说明如下:
■参数:getQuickstartWriteConfigs,设置写入/更新数据至Hudi时,Shuffle时分区数目

■参数:PRECOMBINE_FIELD_OPT_KEY,数据合并时,依据主键字段

■参数:RECORDKEY_FIELD_OPT_KEY,每条记录的唯一id,支持多个字段

■参数:PARTITIONPATH_FIELD_OPT_KEY,用于存放数据的分区字段

数据保存成功以后,查看HDFS文件系统目录:/datas/hudi-warehouse/hudi_trips_cow,结构如下:
在这里插入图片描述

可以发现Hudi表数据存储在HDFS上,以PARQUET列式方式存储的。

3.4 查询数据

从Hudi表中读取数据,同样采用SparkSQL外部数据源加载数据方式,指定format数据源和相关参数options,命令如下:
val tripsSnapshotDF = spark.read.format(“hudi”).load(basePath + “////”)
其中指定Hudi表数据存储路径即可,采用正则Regex匹配方式,由于保存Hudi表属于分区表,并且为三级分区(相当于Hive中表指定三个分区字段),使用表达式://// 加载所有数据。
在这里插入图片描述

打印获取Hudi表数据的Schema信息,如下所示:

tripsSnapshotDF.printSchema()

在这里插入图片描述

比原先保存到Hudi表中数据多5个字段,这些字段属于Hudi管理数据时使用的相关字段。
将获取Hudi表数据DataFrame注册为临时视图,采用SQL方式依据业务查询分析数据。

tripsSnapshotDF.createOrReplaceTempView(“hudi_trips_snapshot”)

查询业务一:乘车费用 大于 20 信息数据

spark.sql(“select fare, begin_lon, begin_lat, ts from
hudi_trips_snapshot where fare > 20.0”).show()

执行查询分析结果如下:
在这里插入图片描述

查询业务二:选取字段查询数据

spark.sql(“select _hoodie_commit_time, _hoodie_record_key,
_hoodie_partition_path, rider, driver, fare from hudi_trips_snapshot”).show()

执行查询分析结果如下:
在这里插入图片描述

至此,完成将数据保存Hudi表,及从Hudi进行加载数据分析操作。

3.5 表数据结构

Hudi表的数据文件,可以使用操作系统的文件系统存储,也可以使用HDFS这种分布式的文件系统存储。为了后续分析性能和数据的可靠性,一般使用HDFS进行存储。以HDFS存储来看,一个Hudi表的存储文件分为两类。
在这里插入图片描述

■.hoodie 文件:由于CRUD的零散性,每一次的操作都会生成一个文件,这些小文件越来越多后,会严重影响HDFS的性能,Hudi设计了一套文件合并机制。 .hoodie文件夹中存放了对应的文件合并操作相关的日志文件。
■amricas和asia相关的路径是实际的数据文件,按分区存储,分区的路径key是可以指定的。

3.5.1 .hoodie文件

Hudi把随着时间流逝,对表的一系列CRUD操作叫做Timeline。Timeline中某一次的操作,叫做Instant。Instant包含以下信息:
■Instant Action,记录本次操作是一次数据提交(COMMITS),还是文件合并(COMPACTION),或者是文件清理(CLEANS);
■Instant Time,本次操作发生的时间;
■State,操作的状态,发起(REQUESTED),进行中(INFLIGHT),还是已完成(COMPLETED);
.hoodie文件夹中存放对应操作的状态记录:
在这里插入图片描述

3.5.2 数据文件

Hudi真实的数据文件使用Parquet文件格式存储,截图如下所示:
在这里插入图片描述

其中包含一个metadata元数据文件和数据文件parquet列式存储。
Hudi为了实现数据的CRUD,需要能够唯一标识一条记录。Hudi将把数据集中的唯一字段(record key ) + 数据所在分区 (partitionPath) 联合起来当做数据的唯一键。

3.6 Hudi 数据存储概述

Hudi数据集的组织目录结构与Hive表示非常相似,一份数据集对应这一个根目录。数据集被打散为多个分区,分区字段以文件夹形式存在,该文件夹包含该分区的所有文件。
在这里插入图片描述

■在根目录下,每个分区都有唯一的分区路径,每个分区数据存储在多个文件中。
■每个文件都有惟一的fileId和生成文件的commit所标识。如果发生更新操作时,多个文件共享相同的fileId,但会有不同的commit。
■每条记录由记录的key值进行标识并映射到一个fileId。
一条记录的key与fileId之间的映射一旦在第一个版本写入该文件时就是永久确定的。换言之,一个fileId标识的是一组文件,每个文件包含一组特定的记录,不同文件之间的相同记录通过版本号区分。

3.6.1 Metadata 元数据

以时间轴(timeline)的形式将数据集上的各项操作元数据维护起来,以支持数据集的瞬态视图,这部分元数据存储于根目录下的元数据目录。一共有三种类型的元数据:
■Commits:一个单独的commit包含对数据集之上一批数据的一次原子写入操作的相关信息。我们用单调递增的时间戳来标识commits,标定的是一次写入操作的开始。
■Cleans:用于清除数据集中不再被查询所用到的旧版本文件的后台活动。
■Compactions:用于协调Hudi内部的数据结构差异的后台活动。例如,将更新操作由基于行存的日志文件归集到列存数据上。

3.6.2 Index 索引

Hudi维护着一个索引,以支持在记录key存在情况下,将新记录的key快速映射到对应的fileId。索引的实现是插件式的。
■Bloom filter:存储于数据文件页脚。默认选项,不依赖外部系统实现。数据和索引始终保持一致。
■Apache HBase :可高效查找一小批key。在索引标记期间,此选项可能快几秒钟。

3.6.3 Data 数据

Hudi以两种不同的存储格式存储所有摄取的数据。这块的设计也是插件式的,用户可选择满足下列条件的任意数据格式:
■读优化的列存格式(ROFormat),缺省值为Apache Parquet;
■写优化的行存格式(WOFormat),缺省值为Apache Avro;

4 IDEA 编程开发

Apache Hudi最初是由Uber开发的,旨在以高效率实现低延迟的数据库访问。Hudi 提供了Hudi 表的概念,这些表支持CRUD操作。接下来,基于Spark框架使用Hudi API 进行读写操作。
在这里插入图片描述

4.1 准备环境

创建Maven Project工程,添加Hudi及Spark相关依赖jar包,POM文件内容如下所示:


    
        aliyun
        http://maven.aliyun.com/nexus/content/groups/public/
    
    
        cloudera
        https://repository.cloudera.com/artifactory/cloudera-repos/
    
    
        jboss
        http://repository.jboss.com/nexus/content/groups/public
    



    2.12.10
    2.12
    3.0.0
    2.7.3
    0.9.0



    
    
        org.scala-lang
        scala-library
        ${scala.version}
    
    
    
        org.apache.spark
        spark-core_${scala.binary.version}
        ${spark.version}
    
    
    
        org.apache.spark
        spark-sql_${scala.binary.version}
        ${spark.version}
    

    
    
        org.apache.hadoop
        hadoop-client
        ${hadoop.version}
    

    
    
        org.apache.hudi
        hudi-spark3-bundle_2.12
        ${hudi.version}
    
    
        org.apache.spark
        spark-avro_2.12
        ${spark.version}
    




    target/classes
    target/test-classes
    
        
            ${project.basedir}/src/main/resources
        
    
    
    
        
            org.apache.maven.plugins
            maven-compiler-plugin
            3.0
            
                1.8
                1.8
                UTF-8
            
        
        
            net.alchim31.maven
            scala-maven-plugin
            3.2.0
            
                
                    
                        compile
                        testCompile
                    
                
            
        
    

创建相关Maven Project工程目录结构,如下图所示:
在这里插入图片描述

其中将HDFS Client配置文件放入工程Project的resources目录下,方便将Hudi表数据存储HDFS上。

4.2 代码结构

基于Spark DataSource数据源,模拟产生Trip乘车交易数据,保存到Hudi表(COW类型: Copy on Write),再从Hudi表加载数据分析查询,具体任务需求如下:

任务一:模拟数据,插入Hudi表,采用COW模式
任务二:快照方式查询(Snapshot Query)数据,采用DSL方式
任务三:更新(Update)数据
任务四:增量查询(Incremental Query)数据,采用SQL方式
任务五:删除(Delete)数据

在工程中创建包【cn.itcast.hudi.spark】,并创建对象:HudiSparkDemo,编写MAIN方法,定义任务需求及功能代码结构:

def main(args: Array[String]): Unit = {
   // 创建SparkSession实例对象,设置属性
   val spark: SparkSession = {
      SparkSession.builder()
         .appName(this.getClass.getSimpleName.stripSuffix("$"))
         .master("local[2]")
         // 设置序列化方式:Kryo
         .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
         .getOrCreate()
   }
   
   val tableName: String = "tbl_trips_cow"
   val tablePath: String = "/hudi-warehouse/tbl_trips_cow"
   
   // 构建数据生成器,为例模拟产生插入和更新数据
   import org.apache.hudi.QuickstartUtils._
   
   // 任务一:模拟数据,插入Hudi表,采用COW模式
   //insertData(spark, tableName, tablePath)
   
   // 任务二:快照方式查询(Snapshot Query)数据,采用DSL方式
   //queryData(spark, tablePath)
   //queryDataByTime(spark, tablePath)
   
   //Thread.sleep(10000)
   // 任务三:更新(Update)数据
   //val dataGen: DataGenerator = new DataGenerator()
   //insertData(spark, tableName, tablePath, dataGen)
   //updateData(spark, tableName, tablePath, dataGen)
   
   // 任务四:增量查询(Incremental Query)数据,采用SQL方式
   //incrementalQueryData(spark, tablePath)
   
   //任务五:删除(Delete)数据
   deleteData(spark, tableName, tablePath)
   
   // 应用结束,关闭资源
   spark.stop()
}

接下来,按照任务说明,一个个完成任务代码编写。

4.3 插入数据Insert

使用官方QuickstartUtils提供模拟产生Trip数据类,模拟100条交易Trip乘车数据,将其转换为DataFrame数据集,保存至Hudi表中,代码基本与spark-shell命令行一致,如下所示:
/**

  • 官方案例:模拟产生数据,插入Hudi表,表的类型COW
    */
def insertData(spark: SparkSession, table: String, path: String): Unit = {
   import spark.implicits._
   
   // TODO: a. 模拟乘车数据
   import org.apache.hudi.QuickstartUtils._
   
   val dataGen: DataGenerator = new DataGenerator()
   val inserts = convertToStringList(dataGen.generateInserts(100))
   
   import scala.collection.JavaConverters._
   val insertDF: DataFrame = spark.read
      .json(spark.sparkContext.parallelize(inserts.asScala, 2).toDS())
   //insertDF.printSchema()
   //insertDF.show(10, truncate = false)
   
   // TODO: b. 插入数据至Hudi表
   import org.apache.hudi.DataSourceWriteOptions._
   import org.apache.hudi.config.HoodieWriteConfig._
   insertDF.write
      .mode(SaveMode.Append)
      .format("hudi") // 指定数据源为Hudi
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      // Hudi 表的属性设置
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), table)
      .save(path)
}

执行代码,查看HDFS文件系统路径下是否保存相关数据。

4.4 查询数据Query

采用Snapshot快照方式从Hudi表查询数据,编写DSL代码,按照业务分析数据,代码如下:
/**

  • 官方案例:采用Snapshot Query快照方式查询表的数据
    */
def queryData(spark: SparkSession, path: String): Unit = {
   import spark.implicits._
   
   val tripsDF: DataFrame = spark.read.format("hudi").load(path)
   //tripsDF.printSchema()
   //tripsDF.show(10, truncate = false)
   
   // 查询费用大于20,小于50的乘车数据
   tripsDF
      .filter($"fare" >= 20 && $"fare" <= 50)
      .select($"driver", $"rider", $"fare", $"begin_lat", $"begin_lon", $"partitionpath", $"_hoodie_commit_time")
      .orderBy($"fare".desc, $"_hoodie_commit_time".desc)
      .show(20, truncate = false)
}

执行上述代码,显示结果如下;
在这里插入图片描述

查询Hudi表数据,可以依据时间进行过滤查询,设置属性:“as.of.instant”,值的格式:“20210728141108"或"2021-07-28 14: 11: 08”,代码演示如下:

/**
 * 官方案例:采用时间过滤查询数据
 */
def queryDataByTime(spark: SparkSession, path: String): Unit = {
   import org.apache.spark.sql.functions._
   
   // 方式一:指定字符串,格式 yyyyMMddHHmmss
   val df1 = spark.read
      .format("hudi")
      .option("as.of.instant", "20211119095057")
      .load(path)
      .sort(col("_hoodie_commit_time").desc)
   df1.show(numRows = 5, truncate = false)
   
   // 方式二:指定字符串,格式yyyy-MM-dd HH:mm:ss
   val df2 = spark.read
      .format("hudi")
      .option("as.of.instant", "20211119095057")
      .load(path)
      .sort(col("_hoodie_commit_time").desc)
   df2.show(numRows = 5, truncate = false)
}

4.5 更新数据Update

Hudi数据湖框架最大优势就是支持对数据的Upser操作(插入或更新),接下来更新Update数据。由于官方提供工具类DataGenerator模拟生成更新update数据时,必须要与模拟生成插入insert数据使用同一个DataGenerator对象,所以重新编写insertData插入数据方法。

/**
 * 官方案例:模拟产生数据,插入Hudi表,表的类型COW
 */
def insertData(spark: SparkSession, table: String, path: String, dataGen: DataGenerator): Unit = {
   import spark.implicits._
   
   // TODO: a. 模拟乘车数据
   import org.apache.hudi.QuickstartUtils._
   val inserts = convertToStringList(dataGen.generateInserts(100))
   
   import scala.collection.JavaConverters._
   val insertDF: DataFrame = spark.read
      .json(spark.sparkContext.parallelize(inserts.asScala, 2).toDS())
   //insertDF.printSchema()
   //insertDF.show(10, truncate = false)
   
   // TODO: b. 插入数据至Hudi表
   import org.apache.hudi.DataSourceWriteOptions._
   import org.apache.hudi.config.HoodieWriteConfig._
   insertDF.write
      .mode(SaveMode.Overwrite)
      .format("hudi") // 指定数据源为Hudi
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      // Hudi 表的属性设置
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), table)
      .save(path)
}

更新数据方法:updateData,先生成更新数据,再保存至Hudi表,代码如下:

/**
 * 官方案例:更新Hudi数据,运行程序时,必须要求与插入数据使用同一个DataGenerator对象,更新数据Key是存在的
 */
def updateData(spark: SparkSession, table: String, path: String, dataGen: DataGenerator): Unit = {
   import spark.implicits._
   
   // TODO: a、模拟产生更新数据
   import org.apache.hudi.QuickstartUtils._

   import scala.collection.JavaConverters._
   val updates = convertToStringList(dataGen.generateUpdates(100))
   val updateDF = spark.read.json(spark.sparkContext.parallelize(updates.asScala, 2).toDS())
   // TODO: b、更新数据至Hudi表
   import org.apache.hudi.DataSourceWriteOptions._
   import org.apache.hudi.config.HoodieWriteConfig._
   updateDF.write
      .mode(SaveMode.Append)
      .format("hudi")
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), table)
      .save(path)
}

4.6 增量查询Incremental query

当Hudi中表的类型为:COW时,支持2种方式查询:Snapshot Queries、Incremental Queries,默认情况下查询属于:Snapshot Queries快照查询,通过参数:hoodie.datasource.query.type 可以进行设置。
在这里插入图片描述

如果是incremental增量查询,需要指定时间戳,当Hudi表中数据满足:instant_time > beginTime时,数据将会被加载读取。此外,也可以设置某个时间范围:endTime > instant_time > begionTime,获取相应的数据,官方源码说明如下:
在这里插入图片描述

接下来,首先从Hudi表加载所有数据,获取其中字段值:_hoodie_commit_time,从中选取一个值,作为增量查询:beginTime开始时间;再次设置属性参数,从Hudi表增量查询数据,具体代码如下所示:

/**
 * 官方案例:采用Incremental Query增量方式查询表的数据
 */
def incrementalQueryData(spark: SparkSession, path: String): Unit = {
   import spark.implicits._
   
   // TODO: a. 加载Hudi表数据,获取commitTime时间,作为增量查询时间阈值
   import org.apache.hudi.DataSourceReadOptions._
   spark.read
      .format("hudi")
      .load(path)
      .createOrReplaceTempView("view_temp_hudi_trips")
   val commits: Array[String] = spark
      .sql(
         """
           |select
           |  distinct(_hoodie_commit_time) as commitTime
           |from
           |  view_temp_hudi_trips
           |order by
           |  commitTime DESC
           |""".stripMargin
      )
      .map(row => row.getString(0))
        .take(50)
   val beginTime = commits(commits.length - 1) // commit time we are interested in
   println(s"beginTime = ${beginTime}")
   
   // TODO: b. 设置Hudi数据CommitTime时间阈值,进行增量查询数据
   val tripsIncrementalDF = spark.read
      .format("hudi")
      // 设置查询数据模式为:incremental,增量读取
      .option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL)
      // 设置增量读取数据时开始时间
      .option(BEGIN_INSTANTTIME.key(), beginTime)
      .load(path)
   
   // TODO: c. 将增量查询数据注册为临时视图,查询费用fare大于20的数据信息
   tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental")
   spark
      .sql(
         """
           |select
           |  `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts
           |from
           |  hudi_trips_incremental
           |where
           |  fare > 20.0
           |""".stripMargin
      )
      .show(10, truncate = false)
}

上述代码,采用将DataFrame注册为临时视图,编写SQL语句,增量查询数据,运行结果如下:
在这里插入图片描述

4.7 删除数据Delete

使用DataGenerator数据生成器,基于已有数据构建要删除的数据,最终保存到Hudi表中,当时需要设置属性参数:hoodie.datasource.write.operation 值为:delete。
在这里插入图片描述

编写方法:deleteData,先从Hudi表获取2条数据,然后构建出数据格式,最后保存到Hudi表,具体代码如下所示:

/**
 * 官方案例:删除Hudi表数据,依据主键UUID进行删除,如果是分区表,指定分区路径
 */
def deleteData(spark: SparkSession, table: String, path: String): Unit = {
   import spark.implicits._
   
   // TODO: a. 加载Hudi表数据,获取条目数
   val tripsDF: DataFrame = spark.read.format("hudi").load(path)
   println(s"Count = ${tripsDF.count()}")
   
   // TODO: b. 模拟要删除的数据
   val dataframe: DataFrame = tripsDF.select($"uuid", $"partitionpath").limit(2)
   import org.apache.hudi.QuickstartUtils._

   val dataGen: DataGenerator = new DataGenerator()
   val deletes = dataGen.generateDeletes(dataframe.collectAsList())
   
   import scala.collection.JavaConverters._
   val deleteDF = spark.read.json(spark.sparkContext.parallelize(deletes.asScala, 2))
   
   // TODO: c. 保存数据至Hudi表,设置操作类型为:DELETE
   import org.apache.hudi.DataSourceWriteOptions._
   import org.apache.hudi.config.HoodieWriteConfig._
   deleteDF.write
      .mode(SaveMode.Append)
      .format("hudi")
      .option("hoodie.insert.shuffle.parallelism", "2")
      .option("hoodie.upsert.shuffle.parallelism", "2")
      // 设置数据操作类型为delete,默认值为upsert
      .option(OPERATION.key(), "delete")
      .option(PRECOMBINE_FIELD.key(), "ts")
      .option(RECORDKEY_FIELD.key(), "uuid")
      .option(PARTITIONPATH_FIELD.key(), "partitionpath")
      .option(TBL_NAME.key(), table)
      .save(path)
   
   // TODO: d. 再次加载Hudi表数据,统计条目数,查看是否减少2条
   val hudiDF: DataFrame = spark.read.format("hudi").load(path)
   println(s"Delete After Count = ${hudiDF.count()}")
}

你可能感兴趣的:(Hudi,学习,hudi)