ES

Cluster:代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的。es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的。

Shards:代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上。构成分布式搜索。分片的数量只能在索引创建前指定,并且索引创建后不能更改。

replicas:代表索引副本,es可以设置多个索引的副本,副本的作用一是提高系统的容错性,当某个节点某个分片损坏或丢失时可以从副本中恢复。二是提高es的查询效率,es会自动对搜索请求进行负载均衡。

Recovery:代表数据恢复或叫数据重新分布,es在有节点加入或退出时会根据机器的负载对索引分片进行重新分配,挂掉的节点重新启动时也会进行数据恢复。

ES为什么要实现集群

在单台ES服务器节点上,随着业务量的发展索引文件慢慢增多,会影响到效率和内存存储问题等。

我们可以采用ES集群,将单个索引的分片到多个不同分布式物理机器上存储,从而可以实现高可用、容错性等。

ES集群中索引可能由多个分片构成,并且每个分片可以拥有多个副本。通过将一个单独的索引分为多个分片,我们可以处理不能在一个单一的服务器上面运行的大型索引,简单的说就是索引的大小过大,导致效率问题。不能运行的原因可能是内存也可能是存储。由于每个分片可以有多个副本,通过将副本分配到多个服务器,可以提高查询的负载能力。

ES是如何解决高并发

ES是一个分布式全文检索框架,隐藏了复杂的处理机制,内部使用 分片机制、集群发现、分片负载均衡请求路由。

Shards 分片:代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上。构成分布式搜索。分片的数量只能在索引创建前指定,并且索引创建后不能更改。

Replicas分片:代表索引副本,es可以设置多个索引的副本,副本的作用一是提高系统的容错性,当某个节点某个分片损坏或丢失时可以从副本中恢复。二是提高es的查询效率,es会自动对搜索请求进行负载均衡。

ES写入原理:


(1)数据先写入 memory buffer,然后定时(默认每隔1s)将 memory buffer 中的数据写入一个新的 segment 文件中,并进入 Filesystem cache(同时清空 memory buffer),这个过程就叫做 refresh;ES 的近实时性:数据存在 memory buffer 时是搜索不到的,只有数据被 refresh 到 Filesystem cache 之后才能被搜索到,而 refresh 是每秒一次, 所以称 es 是近实时的,可以通过手动调用 es 的 api 触发一次 refresh 操作,让数据马上可以被搜索到;

(2)由于 memory Buffer 和 Filesystem Cache 都是基于内存,假设服务器宕机,那么数据就会丢失,所以 ES 通过 translog 日志文件来保证数据的可靠性,在数据写入 memory buffer 的同时,将数据写入 translog 日志文件中,在机器宕机重启时,es 会自动读取 translog 日志文件中的数据,恢复到 memory buffer 和 Filesystem cache 中去。

ES 数据丢失的问题:translog 也是先写入 Filesystem cache,然后默认每隔 5 秒刷一次到磁盘中,所以默认情况下,可能有 5 秒的数据会仅仅停留在 memory buffer 或者 translog 文件的 Filesystem cache中,而不在磁盘上,如果此时机器宕机,会丢失 5 秒钟的数据。也可以将 translog 设置成每次写操作必须是直接 fsync 到磁盘,但是性能会差很多。

(3)flush 操作:不断重复上面的步骤,translog 会变得越来越大,当 translog 文件默认每30分钟或者 阈值超过 512M 时,就会触发 commit 操作,即 flush操作。

① 将 buffer 中的数据 refresh 到 Filesystem Cache 中去,清空 buffer;

② 创建一个新的 commit point(提交点),同时强行将 Filesystem Cache 中目前所有的数据都 fsync 到磁盘文件中;

③ 删除旧的 translog 日志文件并创建一个新的 translog 日志文件,此时 commit 操作完成

删除和更新都是写操作,但是由于 Elasticsearch 中的文档是不可变的,因此不能被删除或者改动以展示其变更;所以 ES 利用 .del 文件 标记文档是否被删除,磁盘上的每个段都有一个相应的.del 文件

(1)如果是删除操作,文档其实并没有真的被删除,而是在 .del 文件中被标记为 deleted 状态。该文档依然能匹配查询,但是会在结果中被过滤掉。

(2)如果是更新操作,就是将旧的 doc 标识为 deleted 状态,然后创建一个新的 doc。

ES的搜索流程:

1、Query阶段:

客户端发送请求到 coordinate node,协调节点将搜索请求广播到所有的 primary shard 或 replica shard。每个分片在本地执行搜索并构建一个匹配文档的大小为 from + size 的优先队列。 每个分片返回各自优先队列中 所有文档的 ID 和排序值 给协调节点,由协调节点及逆行数据的合并、排序、分页等操作,产出最终结果。

2、Fetch阶段:

协调节点根据文档的 ID去各个节点上查询实际的 document 数据,由协调节点返回结果给客户端。coordinate node 对 doc id 进行哈希路由,将请求转发到对应的 node,此时会使用 round-robin 随机轮询算法,在 primary shard 以及其所有 replica 中随机选择一个,让读请求负载均衡。

ES在高并发下如何保证读写一致性:

(1)对于更新操作:可以通过版本号使用乐观并发控制,以确保新版本不会被旧版本覆盖

(2)对于写操作,一致性级别支持 quorum/one/all,默认为 quorum,即只有当大多数分片可用时才允许写操作。但即使大多数可用,也可能存在因为网络等原因导致写入副本失败,这样该副本被认为故障,分片将会在一个不同的节点上重建。

one:要求我们这个写操作,只要有一个primary shard是active活跃可用的,就可以执行

all:要求我们这个写操作,必须所有的primary shard和replica shard都是活跃的,才可以执行这个写操作

quorum:默认的值,要求所有的shard中,必须是大部分的shard都是活跃的,可用的,才可以执行这个写操作

(3)对于读操作,可以设置 replication 为 sync(默认),这使得操作在主分片和副本分片都完成后才会返回;如果设置replication 为 async 时,也可以通过设置搜索请求参数 _preference 为 primary 来查询主分片,确保文档是最新版本。

Elasticsearch 如何 选举 Master:

(1)确认候选主节点的最少投票通过数量,elasticsearch.yml 设置的值 discovery.zen.minimum_master_nodes;

(2)对所有候选 master 的节点(node.master: true)根据 nodeId 字典排序,每次选举每个节点都把自己所知道节点排一次序,然后选出第一个(第0位)节点,暂且认为它是master节点。

(3)如果对某个节点的投票数达到阈值,并且该节点自己也选举自己,那这个节点就是master。否则重新选举一直到满足上述条件。

Elasticsearch是如何避免脑裂现象:

(1)当集群中 master 候选节点数量不小于3个时(node.master: true),可以通过设置最少投票通过数量(discovery.zen.minimum_master_nodes),设置超过所有候选节点一半以上来解决脑裂问题,即设置为 (N/2)+1;

(2)当集群 master 候选节点 只有两个时,这种情况是不合理的,最好把另外一个node.master改成false。如果我们不改节点设置,还是套上面的(N/2)+1公式,此时discovery.zen.minimum_master_nodes应该设置为2。这就出现一个问题,两个master备选节点,只要有一个挂,就选不出master了

你可能感兴趣的:(ES)