- 聊聊langchain4j的HTTP Client
langchain4j
序本文主要研究一下langchain4j的HTTPClientlangchain4j-http-clientlangchain4j提供了langchain4j-http-client模块,它实现了一个HttpClientSPI(服务提供者接口),其他模块通过该接口调用LLM提供商的RESTAPI。这意味着底层HTTP客户端可以被自定义,通过实现HttpClientSPI,还可以集成任何其他HTTP
- 《当人工智能遇上广域网:跨越地理距离的通信变革》
程序猿阿伟
人工智能
在数字化时代,广域网作为连接全球信息的纽带,让数据能够在不同地区的网络之间流动。然而,地理距离给广域网数据传输带来诸多挑战,如高延迟、低带宽、信号衰减和不稳定等问题。幸运的是,飞速发展的人工智能技术为解决这些难题提供了新的方向,开启了广域网传输的新篇章。广域网传输面临的地理挑战广域网覆盖范围极为广泛,可连接不同城市、国家甚至跨越洲际,这使得数据传输要跨越漫长的地理距离。以跨国公司的广域网为例,其总
- 技术大佬和普通程序员改bug的区别!
程序员干货站
大数据编程语言java人工智能数据分析
阅读本文大概需要2min文/强哥;未经授权禁止转载在我这么多年的工作生涯里,难免遇到那些工作糊弄的开发同事,随意编程的实习生,不够细致的测试,缺乏专业度的产品...产品的体验,取决于多个环节的把控,但很多情况下,由于bug严重影响体验,或者直接造成产品事故的,那么开发想甩锅都甩不掉!今天就给大家从几方面讲讲,经验丰富的程序员,是怎么debug的!1、并不是所有bug都需要修复修bug有个前提,那就
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- 北单109 德国 vs 意大利
weixin_66725336
后端
北单109德国vs意大利两强对攻激战可期进球大战一触即发阵容动态德国:上轮欧国联客场采用「4-2-3-1」阵型,朱利安·布兰特顶替受伤的凯·哈弗茨出任单箭头,穆西亚拉、萨内与阿米里组成前场攻击群。尽管开场先失一球,但球队通过凯文·丹斯特(替补登场后迅速破门)和格雷茨卡的制胜球完成逆转。本轮莱昂·格雷茨卡和卡里姆·阿德耶米有望轮换首发,门将奥利弗·鲍曼继续镇守球门。意大利:上轮主场以「3-5-2」阵
- 机器学习 Day01人工智能概述
山北雨夜漫步
机器学习人工智能
1.什么样的程序适合在gpu上运行计算密集型的程序:此类程序主要运算集中在寄存器,寄存器读写速度快,而GPU拥有强大的计算能力,能高效处理大量的寄存器运算,因此适合在GPU上运行。像科学计算中的数值模拟、密码破解等场景的程序,都属于计算密集型,在GPU上运行可大幅提升运算速度。易于并行的程序:GPU采用SIMD架构,有众多核心,同一时间每个核心适合做相同的事。易于并行的程序能充分利用GPU这一特性
- 《今日AI-人工智能-编程日报》-源自2025年3月20日
小亦编辑部
每日AI-人工智能-编程日报人工智能大数据
一、AI行业动态英伟达新一代AI芯片Rubin发布计划英伟达宣布其新一代AI芯片Rubin将于2026年下半年推出,下下一代AI芯片架构命名为Feynman,计划于2028年登场。同时,英伟达还推出了RTXPRO6000系列Blackwell专业卡,拥有24064核心、96GB显存和最高600W功耗。OpenAI星际之门数据中心建设进展OpenAI的首个数据中心“星际之门”预计于2026年中在德克
- 聊聊langchain4j的HTTP Client
hello_ejb3
httpiphone网络协议
序本文主要研究一下langchain4j的HTTPClientlangchain4j-http-clientlangchain4j提供了langchain4j-http-client模块,它实现了一个HttpClientSPI(服务提供者接口),其他模块通过该接口调用LLM提供商的RESTAPI。这意味着底层HTTP客户端可以被自定义,通过实现HttpClientSPI,还可以集成任何其他HTTP
- 一文讲清楚深度学习和机器学习
平凡而伟大.
机器学习人工智能深度学习机器学习人工智能
目录1.定义机器学习(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理机器学习深度学习3.应用场景机器学习深度学习4.主要区别5.为什么选择深度学习?6.总结深度学习和机器学习是人工智能(AI)领域中两个密切相关但有所区别的概念。要清楚地解释它们之间的关系,我们可以从定义、工作原理、应用场景以及两者的主要区别等方面进行探讨。1.定义机器学习(Machin
- AIOps:解决企业IT挑战的智能利器
雅菲奥朗
认证培训AIOpsSRE可观测性
前言:在当今数字化的时代,企业IT基础设施和应用程序规模不断扩大,面临着日益复杂的挑战。在这种情况下,AIOps人工智能运维成为解决企业IT运维困境的智能利器。AIOps与可观测性密切相关,可观测性是实现AIOps的基础。通过收集、监视和理解系统数据,AIOps能够自动化运维任务、实时监控系统状态、预测潜在问题,从而提高效率和稳定性。AIOps尤其适用于IT运维部门,这是一个迫切需要此类技术的群体
- 使用AIOps进行更好的事件管理
茵赛飞3D CAD数据转换软件
pagerdutydevops人工智能运维
DevOps为科技界带来了更加协作和高效的工作流程。随着AIOps的集成,自动化更进一步,使用人工智能为团队提供更快的根本原因分析和算法降噪。主要从采用AIOps中受益的主要领域之一是事件管理。AIOps可以帮助DevOps团队自动化工作流程,以实现更智能、更高效的事件管理,从而腾出时间让IT运营团队成员专注于创新以改善用户体验。在本文中,我们将了解AIOps如何从检测和识别到响应改进事件管理,以
- AI大模型编程能力对比:Deepseek&Claude&Gemini
黑夜路人(heiyeluren)
AI人工智能人工智能aiAIGC语言模型
在当今快速发展的技术领域,人工智能(AI)模型在编程和数据处理方面的应用越来越广泛。不同的AI模型因其独特的设计理念和技术优势,适用于不同的编程任务和场景。本文将对三种主流的AI模型——DeepSeekv3、GeminiFlash2.0和Claude3.5Sonnet的编程能力进行详细对比,帮助读者根据具体需求选择最合适的工具。同时对DeepSeekv3、GeminiFlash2.0和Claude
- DeepSeek:智能搜索与分析的新纪元
XRC2231
学习
在人工智能浪潮席卷全球的今天,DeepSeek如同一颗璀璨的新星,以其独特的魅力和强大的功能,在AI领域脱颖而出。DeepSeek,这一基于深度学习和数据挖掘技术的智能搜索与分析系统,不仅重新定义了搜索引擎的边界,更以其卓越的性能和广泛的应用场景,为全球用户带来了前所未有的智能体验。本文将从DeepSeek的定义、特点、应用场景、优势等方面进行全面而深入的介绍,带您领略这一新兴技术的独特魅力。一、
- 哈尔滨工业大学DeepSeek公开课人工智能:大模型原理 技术与应用-从GPT到DeepSeek|附视频下载方法
你觉得205
人工智能机器学习大数据ai知识图谱python运维
导读INTRODUCTION今天继续哈尔滨工业大学车万翔教授带来了一场主题为“DeepSeek技术前沿与应用”的报告。本报告深入探讨了大语言模型在自然语言处理(NLP)领域的核心地位及其发展历程,从基础概念出发,延伸至语言模型在机器翻译、拼音输入法、语音识别等任务中的关键作用。强调了语言模型不仅辅助其他NLP任务,本身也蕴含大量知识,如地理信息、语义理解和推理能力。随着技术的发展,尤其是trans
- HTML5+CSS实现图片3D旋转效果,附音乐
宁醉小白
html5前端html
利用程序呈现图片,可以俘获一众女生的心,增加音乐可以实现图片变化的同时也带上了想要得到效果,如此一程序实乃众人之喜。先看看程序呈现的效果,还是特别吸引人的。先在网上爬取想要呈现的美女照片,存放在文件夹img-one,与程序路径一致。图片像素需进行调整,同一面图片可以使用同一个图片,保持图片像素一致的同时也增加了立体感。第二张02.jpg和2.jpg可以倒着放,这样在程序实现的时候,可以和其他方向的
- When Large Language Models Meet Speech: A Survey on Integration Approaches
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
主要内容研究背景:大语言模型(LLMs)在自然语言处理领域取得显著进展,其与语音的融合具有广泛应用前景,但缺乏相关集成方法的综述。文章将语音与LLMs集成方法分为基于文本、基于潜在表示和基于音频令牌三大类。集成方法基于文本的集成:通过级联集成、LLM重打分和LLM生成式错误纠正等方式,利用文本作为LLMs的输入和输出,处理语音相关任务,但存在信息损失和准确性与多样性平衡的问题。基于潜在表示的集成:
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- 编程内容简述!
恶霸不委屈
开发语言青少年编程汇编javapython
编程是指通过计算机语言来开发软件、程序和应用的过程,通常通过编写一系列的指令,来让计算机完成特定的任务。编程可以涉及多个领域和技术,以下是一些主要的编程内容:1.编程语言编程语言是程序员与计算机进行沟通的桥梁,不同的编程语言适用于不同的任务。常见的编程语言有:Python:简单易学,适用于数据分析、人工智能、网页开发等。JavaScript:网页开发中不可或缺的语言,用于动态网页和前端开发。Jav
- Emacs和SML的安装和使用
weixin_42281226
emacs编辑器
环境:Mac电脑参考文章:编程语言软件安装和使用:SML和Emacs1.Emacs安装和基本使用从官网EmacsForMacOSX下载最新版本,正常安装即可。Emacs使用组合键进行操作(组合键比较难记,可以先尝试通用键)。最重要的操作:(C表示Control)C-xC-c:退出EmacsC-g:取消当前操作C-xC-f:打开文件或新建文件C-xC-s:保存文C-xC-w:等同于saveasC-s
- 向量数据库技术系列三-Chroma介绍
恰恰虎
chromadb数据库向量
一、前言Chroma是一个开源的AI原生向量数据库,旨在帮助开发者更加便捷地构建大模型应用,将知识、事实和技能等文档整合进大型语言模型(LLM)中。它提供了简单易用的API,支持存储嵌入及其元数据、嵌入文档和查询、搜索嵌入等功能。主要有以下特点:轻量级:Chroma是一个基于向量检索库实现的轻量级向量数据库,不需要复杂的配置和大规模基础设施支持,非常适合小型或中型项目。易用性:提供简单的API,易
- 新手如何使用 Milvus
巴依老爷coder
数据库milvus向量数据库数据库
一文带你入门Milvus:详细指南新手如何使用Milvus:详细指南一、Milvus简介主要特点应用领域二、安装Milvus安装DockerCompose基于DockerCompose安装Milvus服务端安装attu-可视化界面工具三、快速入门安装PythonSDK连接数据库方式1方式2(方式1的封装)数据库操作核心概念集合操作数据操作插入数据精准查询数据-get条件查询数据-query查询数据
- Macrorit Partition Expert:守护硬盘数据的「分区手术专家」
KJ-拾荒者
职场和发展经验分享性能优化软件推荐效率提升
你是否经历过这些崩溃瞬间?想给C盘扩容却怕误删文件,硬盘买回来发现系统不认大容量分区,或是想彻底清除隐私数据却担心被恢复软件找回……传统分区工具要么功能受限,要么操作风险高,稍有不慎就会导致数据灾难。MacroritPartitionExpert的出现,为普通用户和专业运维人员提供了一站式解决方案。作为兼容性极强的分区管理工具,它同时支持MBR和GPT分区表,轻松突破传统系统对2TB以上大硬盘的识
- LLM之向量数据库Chroma milvus FAISS
maxmaxma
数据库milvusfaiss
以下是Chroma、Milvus和FAISS的核心区别,从功能定位、架构设计、性能及应用场景等维度进行对比:一、功能定位Chroma轻量级向量数据库:专注于快速构建中小型语义搜索原型,提供简单易用的API,适合快速集成到现有应用中。特点:支持近似最近邻搜索(ANN)、实时性能优化,但对大规模数据处理能力有限。Milvus分布式向量数据库:专为超大规模向量数据设计,支持云原生架构和高可用性,适合企业
- 大模型Agent 和 RAG 的关系
大数据追光猿
大模型语言模型人工智能学习方法transformer
Agent和RAG(Retrieval-AugmentedGeneration)是两种在自然语言处理(NLP)和人工智能领域中广泛使用的技术,它们在功能、目标和实现方式上既有区别又有联系。以下是它们的关系及其协同作用的详细分析。1.Agent和RAG的定义(1)Agent定义:Agent是一种智能体,能够感知环境并采取行动以完成特定任务。在NLP领域,Agent通常指一个基于大语言模型(LLM)的
- 国产模型能否挑战 GPT-4?一文拆解 DeepSeek-V3 架构与实战应用
AI筑梦师
人工智能学习框架架构深度学习pythonagi人工智能tensorflow
✳️一、引言✅1.1DeepSeek-V3发布背景与定位随着大模型技术的快速演进,从GPT-3到GPT-4,全球在通用人工智能方向取得了长足进展。但与此同时,开源社区始终缺乏一个真正兼顾性能、效率、中文能力和实用性的高质量大模型。DeepSeek-V3的推出正是在这个背景下的一次关键突破。DeepSeek-V3是由中国团队DeepSeek开发的第三代大语言模型,它具备以下几个核心特性:开源可商用:
- Github上神仙级大模型项目:大语言模型(LLM)入门学习路线图,三个月让你从大模型基础到精通!
AI大模型-大飞
github语言模型学习人工智能AI大模型程序员AI
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- Agent、RAG、LangChain的概念及作用
北极冰雨
大模型人工智能
Agent:概念:在人工智能中,Agent通常指的是能够执行任务或做出决策的实体,可以是简单的程序,也可以是复杂的系统,如自动化客服助手、推荐系统等,甚至可以是软件代理、机器人或虚拟助手等各种形式。作用:它能利用内置的大语言模型来做出规划,决定执行哪些步骤,以及每个步骤需要调用哪些工具(如RAG),之后调用相应的工具,最终完成任务。例如,在客服问答场景中,Agent可以根据用户的问题,规划出需要查
- DeepSeek多语言AI高效应用实践
智能计算研究中心
其他
内容概要在人工智能技术快速迭代的背景下,DeepSeek系列模型凭借混合专家架构(MoE)与670亿参数规模,在多语言处理、视觉语言理解及复杂任务生成领域实现了突破性进展。本文系统性拆解其技术架构设计逻辑,聚焦论文写作、代码生成、SEO关键词拓展三大核心场景,分析模型在高生成质量、低使用成本维度的差异化优势。技术维度DeepSeekProver传统单模态模型多语言支持97种语言动态切换单一语种优化
- AI大模型训练教程
Small踢倒coffee_氕氘氚
python自学经验分享笔记
1.引言随着人工智能技术的快速发展,大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。训练一个大模型需要大量的计算资源、数据和专业知识。本教程将带你了解如何从零开始训练一个AI大模型。2.准备工作2.1硬件要求GPU:推荐使用NVIDIA的高性能GPU,如A100、V100等。内存:至少64GBRAM。存储:SSD存储,至少1TB。#2.2软件环境操作系统:Lin
- 多模态大模型常见问题
cv2016_DL
多模态大模型人工智能语言模型自然语言处理机器学习transformer
1.视觉编码器和LLM连接时,使用BLIP2中Q-Former那种复杂的Adaptor好还是LLaVA中简单的MLP好,说说各自的优缺点?Q-Former(BLIP2):优点:Q-Former通过查询机制有效融合了视觉和语言特征,使得模型能够更好地处理视觉-语言任务,尤其是在多模态推理任务中表现优秀。缺点:Q-Former结构较为复杂,计算开销较大。MLP(LLaVA):优点:MLP比较简单,计算
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include