实际使用看这一个
#if defined(RT_USING_SIGNALS)
rt_sigset_t sig_pending; /**< the pending signals 记录来了的信号 */
rt_sigset_t sig_mask; /**< the mask bits of signal 记录屏蔽的信号 */
rt_sighandler_t *sig_vectors; /**< vectors of signal handler 记录处理函数 */
void *si_list; /**< the signal infor list 挂起的信号的信息链表 */
#endif
线程管理结构体
typedef void (*rt_sighandler_t)(int signo);
处理函数
struct siginfo_node
{
siginfo_t si;
struct rt_slist_node list;
};
这一个是用来记录挂起的信号的的信息
信号的处理除了会在这里面显示的位置进行, 还会在切换任务的时候处理
rt_sighandler_t rt_signal_install(int signo, rt_sighandler_t handler)
{
rt_base_t level;
rt_sighandler_t old = RT_NULL;
rt_thread_t tid = rt_thread_self();
//看一看是不是有效的值
if (!sig_valid(signo)) return SIG_ERR;
level = rt_hw_interrupt_disable();
if (tid->sig_vectors == RT_NULL)
{
//这一个线程之前没有安转过
rt_thread_alloc_sig(tid);
}
if (tid->sig_vectors)
{
old = tid->sig_vectors[signo];
if (handler == SIG_IGN) tid->sig_vectors[signo] = RT_NULL;
else if (handler == SIG_DFL) tid->sig_vectors[signo] = _signal_default_handler;
else tid->sig_vectors[signo] = handler;
}
rt_hw_interrupt_enable(level);
return old;
}
void rt_thread_alloc_sig(rt_thread_t tid)
{
int index;
rt_base_t level;
rt_sighandler_t *vectors;
//获取一个足以记录处理所有信号的函数的数组
vectors = (rt_sighandler_t *)RT_KERNEL_MALLOC(sizeof(rt_sighandler_t) * RT_SIG_MAX);
RT_ASSERT(vectors != RT_NULL);
for (index = 0; index < RT_SIG_MAX; index ++)
{
//初始化为默认的函数
vectors[index] = _signal_default_handler;
}
//把这一个数组记录在线程里面
level = rt_hw_interrupt_disable();
tid->sig_vectors = vectors;
rt_hw_interrupt_enable(level);
}
//默认的函数
static void _signal_default_handler(int signo)
{
LOG_I("handled signo[%d] with default action.", signo);
return ;
}
//实际上是更新一下线程里面的屏蔽值
void rt_signal_mask(int signo)
{
rt_base_t level;
rt_thread_t tid = rt_thread_self();
level = rt_hw_interrupt_disable();
tid->sig_mask &= ~sig_mask(signo);
rt_hw_interrupt_enable(level);
}
void rt_signal_unmask(int signo)
{
rt_base_t level;
rt_thread_t tid = rt_thread_self();
level = rt_hw_interrupt_disable();
//改一下标志
tid->sig_mask |= sig_mask(signo);
/* let thread handle pended signals */
if (tid->sig_mask & tid->sig_pending)
{
//有需要处理的标志
rt_hw_interrupt_enable(level);
_signal_deliver(tid);
}
else
{
rt_hw_interrupt_enable(level);
}
}
//根据要处理的有信号的线程的状态进行分支处理
static void _signal_deliver(rt_thread_t tid)
{
rt_ubase_t level;
level = rt_hw_interrupt_disable();
/* thread is not interested in pended signals */
if (!(tid->sig_pending & tid->sig_mask))
{
//没有待处理的信号
rt_hw_interrupt_enable(level);
return;
}
if ((tid->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND)
{
//这一个任务挂起了(他在等待这一个信号)
/* resume thread to handle signal */
rt_thread_resume(tid);
/* add signal state */
tid->stat |= (RT_THREAD_STAT_SIGNAL | RT_THREAD_STAT_SIGNAL_PENDING);
rt_hw_interrupt_enable(level);
//恢复这一个任务
/* re-schedule */
rt_schedule();
//这时候已经看完是不是这一个信号待处理了
}
else
{
//这一个任务运行或ready中
if (tid == rt_thread_self())
{
//是当前的在运行的任务
/* add signal state */
tid->stat |= RT_THREAD_STAT_SIGNAL;
rt_hw_interrupt_enable(level);
/* do signal action in self thread context */
if (rt_interrupt_get_nest() == 0)
{
//直接开启这一个软件线程
rt_thread_handle_sig(RT_TRUE);
}
}
else if (!((tid->stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL))
{
//不是在运行的任务, 这个时候会为这一个任务开启一个新的栈
/* add signal state 更新一下标志 */
tid->stat |= (RT_THREAD_STAT_SIGNAL | RT_THREAD_STAT_SIGNAL_PENDING);
/* point to the signal handle entry */
tid->stat &= ~RT_THREAD_STAT_SIGNAL_PENDING;
tid->sig_ret = tid->sp;//记录一下之前的栈
//这一个看线程处理篇
//实际处理使用的之前栈下面的一部分
tid->sp = rt_hw_stack_init((void *)_signal_entry, RT_NULL,
(void *)((char *)tid->sig_ret - 32), RT_NULL);//设置一下这一个线程返回以后的处理
rt_hw_interrupt_enable(level);
LOG_D("signal stack pointer @ 0x%08x", tid->sp);
/* re-schedule */
rt_schedule();
}
else
{
rt_hw_interrupt_enable(level);
}
}
}
//这是一个软件中断的线程, 如果需要执行这一个的线程不在runing状态, 会使用一个新的栈空间执行这一个线程
void rt_thread_handle_sig(rt_bool_t clean_state)
{
rt_base_t level;
rt_thread_t tid = rt_thread_self();
struct siginfo_node *si_node;
level = rt_hw_interrupt_disable();
if (tid->sig_pending & tid->sig_mask)
{
/* if thread is not waiting for signal 等一个信号的话直接返回 */
if (!(tid->stat & RT_THREAD_STAT_SIGNAL_WAIT))
{
//这个时候不是在等一个信号
while (tid->sig_pending & tid->sig_mask)
{
//依次处理信号
int signo, error;
rt_sighandler_t handler;
//获取一个待处理的信号
si_node = (struct siginfo_node *)tid->si_list;
if (!si_node) break;
/* remove this sig info node from list */
if (si_node->list.next == RT_NULL)
tid->si_list = RT_NULL;//这是最后一个信号
else
tid->si_list = (void *)rt_slist_entry(si_node->list.next, struct siginfo_node, list);//记录下一个信号
signo = si_node->si.si_signo;//获取标号
handler = tid->sig_vectors[signo];//获取处理函数
tid->sig_pending &= ~sig_mask(signo);//更新挂起的标志
rt_hw_interrupt_enable(level);
LOG_D("handle signal: %d, handler 0x%08x", signo, handler);
if (handler) handler(signo);//执行处理函数
level = rt_hw_interrupt_disable();
error = -RT_EINTR;
rt_mp_free(si_node); /* release this siginfo node 从内存池里面释放 */
/* set errno in thread tcb */
tid->error = error;
}
/* whether clean signal status */
//这一个标志需要清除
if (clean_state == RT_TRUE)
{
tid->stat &= ~RT_THREAD_STAT_SIGNAL;
}
else
{
return;
}
}
}
rt_hw_interrupt_enable(level);
}
//非当前线程的时候线程返回时候的处理函数(软件中断)
static void _signal_entry(void *parameter)
{
rt_thread_t tid = rt_thread_self();
/* handle signal 处理一下信号 */
rt_thread_handle_sig(RT_FALSE);
/* return to thread 返回之前的在处理的任务状态 */
tid->sp = tid->sig_ret;//改变栈
tid->sig_ret = RT_NULL;
LOG_D("switch back to: 0x%08x\n", tid->sp);
tid->stat &= ~RT_THREAD_STAT_SIGNAL;
//线程处理的里面分析了, 主要是切换一下运行位置以及栈
rt_hw_context_switch_to((rt_ubase_t)&(tid->sp));
}
#define sig_mask(sig_no) (1u << sig_no)
int rt_thread_kill(rt_thread_t tid, int sig)
{
siginfo_t si;
rt_base_t level;
struct siginfo_node *si_node;
if (!sig_valid(sig)) return -RT_EINVAL;
LOG_I("send signal: %d", sig);
si.si_signo = sig;
si.si_code = SI_USER;
si.si_value.sival_ptr = RT_NULL;
level = rt_hw_interrupt_disable();
if (tid->sig_pending & sig_mask(sig))
{
//这一个信号标志已经挂起了, 用这一个新的信息队列覆盖之前的信息
/* whether already emits this signal? */
struct rt_slist_node *node;
struct siginfo_node *entry;
//获取挂起的信号的信息链表
si_node = (struct siginfo_node *)tid->si_list;
if (si_node)
node = (struct rt_slist_node *)&si_node->list;
else
node = RT_NULL;
/* update sig info */
for (; (node) != RT_NULL; node = node->next)
{
//遍历当前任务待处理的所有信号信息
entry = rt_slist_entry(node, struct siginfo_node, list);
if (entry->si.si_signo == sig)
{
//用新的信息覆盖
memcpy(&(entry->si), &si, sizeof(siginfo_t));
rt_hw_interrupt_enable(level);
return 0;
}
}
}
rt_hw_interrupt_enable(level);
//这时候是标志没有挂起, 或者挂起了但是没有信息处理的链表项
//获取一个内存块
si_node = (struct siginfo_node *) rt_mp_alloc(_rt_siginfo_pool, 0);
if (si_node)
{
rt_slist_init(&(si_node->list));
//更新一下信息
memcpy(&(si_node->si), &si, sizeof(siginfo_t));
level = rt_hw_interrupt_disable();
//把这个挂入链表里面
if (tid->si_list)
{
struct siginfo_node *si_list;
//这个里面前面有节点
si_list = (struct siginfo_node *)tid->si_list;
rt_slist_append(&(si_list->list), &(si_node->list));
}
else
{
//前面没有, 这就是第一个
tid->si_list = si_node;
}
/* a new signal 记录一下标志 */
tid->sig_pending |= sig_mask(sig);
rt_hw_interrupt_enable(level);
}
else
{
LOG_E("The allocation of signal info node failed.");
}
/* deliver signal to this thread */
_signal_deliver(tid);
return RT_EOK;
}
int rt_system_signal_init(void)
{
//这一个会设置rt_mp_alloc返回的大小
_rt_siginfo_pool = rt_mp_create("signal", RT_SIG_INFO_MAX, sizeof(struct siginfo_node));
if (_rt_siginfo_pool == RT_NULL)
{
LOG_E("create memory pool for signal info failed.");
RT_ASSERT(0);
}
return 0;
}
这一个实际是一直在等待那一个信号, 那一个信号来之前一直挂起, 不会处理其他信号
int rt_signal_wait(const rt_sigset_t *set, rt_siginfo_t *si, rt_int32_t timeout)
{
int ret = RT_EOK;
rt_base_t level;
rt_thread_t tid = rt_thread_self();
struct siginfo_node *si_node = RT_NULL, *si_prev = RT_NULL;
/* current context checking */
RT_DEBUG_IN_THREAD_CONTEXT;
/* parameters check */
if (set == NULL || *set == 0 || si == NULL )
{
ret = -RT_EINVAL;
goto __done_return;
}
/* clear siginfo to avoid unknown value 清空一下, 用于记录 */
memset(si, 0x0, sizeof(rt_siginfo_t));
level = rt_hw_interrupt_disable();
/* already pending */
if (tid->sig_pending & *set) goto __done;
if (timeout == 0)
{
ret = -RT_ETIMEOUT;
goto __done_int;
}
/* suspend self thread 把自己挂起 */
rt_thread_suspend(tid);
/* set thread stat as waiting for signal */
tid->stat |= RT_THREAD_STAT_SIGNAL_WAIT;
/* start timeout timer */
if (timeout != RT_WAITING_FOREVER)
{
/* reset the timeout of thread timer and start it */
rt_timer_control(&(tid->thread_timer),
RT_TIMER_CTRL_SET_TIME,
&timeout);
rt_timer_start(&(tid->thread_timer));
}
rt_hw_interrupt_enable(level);
/* do thread scheduling */
rt_schedule();
//返回, 可能超时或者有信号来了
level = rt_hw_interrupt_disable();
/* remove signal waiting flag */
tid->stat &= ~RT_THREAD_STAT_SIGNAL_WAIT;
/* check errno of thread */
if (tid->error == -RT_ETIMEOUT)
{
//是超时
tid->error = RT_EOK;
rt_hw_interrupt_enable(level);
/* timer timeout */
ret = -RT_ETIMEOUT;
goto __done_return;
}
__done:
//是信号来了
/* to get the first matched pending signals */
si_node = (struct siginfo_node *)tid->si_list;
while (si_node)
{
//遍历一下所有的节点
int signo;
signo = si_node->si.si_signo;
if (sig_mask(signo) & *set)
{
//是在等的这一个
*si = si_node->si;
LOG_D("sigwait: %d sig raised!", signo);
if (si_prev) si_prev->list.next = si_node->list.next;//这一个信号的链表不在第一个
else
{
//是第一个
struct siginfo_node *node_next;
if (si_node->list.next)
{
//不是最后一个
node_next = (void *)rt_slist_entry(si_node->list.next, struct siginfo_node, list);
tid->si_list = node_next;
}
else
{
//唯一的信号
tid->si_list = RT_NULL;
}
}
/* clear pending */
tid->sig_pending &= ~sig_mask(signo);//记录为这一个链表处理完了
rt_mp_free(si_node);//释放一下
break;
}
si_prev = si_node;
if (si_node->list.next)
{
//后面还有, 获取下一个
si_node = (void *)rt_slist_entry(si_node->list.next, struct siginfo_node, list);
}
else
{
si_node = RT_NULL;
}
}//while
__done_int:
rt_hw_interrupt_enable(level);
__done_return:
return ret;
}
#ifdef RT_USING_SIGNALS
/* check stat of thread for signal */
level = rt_hw_interrupt_disable();
if (rt_current_thread->stat & RT_THREAD_STAT_SIGNAL_PENDING)
{
extern void rt_thread_handle_sig(rt_bool_t clean_state);
rt_current_thread->stat &= ~RT_THREAD_STAT_SIGNAL_PENDING;
rt_hw_interrupt_enable(level);
/* check signal status 处理信号 */
rt_thread_handle_sig(RT_TRUE);
}
else
{
rt_hw_interrupt_enable(level);
}
#endif
在任务切换的时候rt_schedule里面