- 《大数据时代“快刀”:Flink实时数据处理框架优势全解析》
程序猿阿伟
大数据flink
在数字化浪潮中,数据呈爆发式增长,实时数据处理的重要性愈发凸显。从金融交易的实时风险监控,到电商平台的用户行为分析,各行业都急需能快速处理海量数据的工具。Flink作为一款开源的分布式流处理框架,在这一领域崭露头角,备受瞩目。一、真正实时,毫秒级响应与部分将流处理模拟为微批处理的框架不同,Flink是专为实时流处理打造的“原生”引擎。它直接处理持续不断的事件流,无需将数据攒成批次再处理,这种设计赋
- 园区智能化系统实现管理与服务的智能化转型与创新进阶
快鲸智慧楼宇管理系统
其他
内容概要园区智能化系统的出现,标志着管理与服务向智能化转型的重要一步。这一系统不仅仅是一个技术解决方案,更是一个全面提升园区运营效率与安全性的独特工具。通过集成大数据分析、物联网和人工智能,园区智能化系统能够为各类园区如工业园、产业园、物流园、写字楼与公寓等提供切实可行的解决方案。“智能化管理不仅是未来的发展趋势,更是提升竞争力的必要手段。”在资产管理方面,智能化系统能够实时监控并优化资源的配置,
- CDH_6.3.2的搭建
我的K8409
Flinklinux大数据分布式
一站式搭建大数据的应用1、前提条件和准备工作hostnamectlset-hostnamecdh01hostnamectlset-hostnamecdh02hostnamectlset-hostnamecdh032、修改IP和Host映射关系(所有节点)在window中也配置一下vim/etc/hosts192.168.92.201cdh01192.168.92.202cdh02192.168.9
- 大数据笔记之 Flink1.17 算子
凡许真
大数据flink1.17算子
文章目录前言一、Partition分区(物理分区)1.1随机分区shuffle1.2轮询分区rebalance1.3重缩放分区rescale1.4广播分区broadcast1.5全局分区global1.6keyby1.7自定义分区Custom二、transform2.1flatMap2.2filter2.3RichFunction2.4map三、Aggregate聚合3.1keyBy()3.2ma
- 01.双Android容器解决方案
高桐@BILL
容器Android
目录写在前面一,容器1.1容器的原理1.1.1Namespace1.1.2Cgroups(ControlGroups)1.1.3联合文件系统(UnionFileSystem)1.2容器的应用1.2.1微服务架构1.2.2持续集成和持续部署(CI/CD)1.2.3多租户环境1.2.4混合云和多云环境1.2.5大数据和机器学习1.2.6android应用场景1.3容器方案选型1.3.1Docker1.
- 监控易:智慧高校一体化综合运维解决方案
MXsoft618
运维信息安全物联网监控类
新冠疫情发生以来,线上线下教育模式的初探,促使学校、家长和社会对于教育信息化认识产生巨大的转变。伴随着云计算和物联网的发展,教育已经开启了一个全新的时代。自“十三五”规划中明确提出“支持各级各类学校建设智慧校园,综合利用互联网、大数据、人工智能和虚拟现实技术探索未来教育教学新模式”以来,政策春风也不断加码教育信息化进程,《教育信息化2.0行动计划》以及《智慧校园总体框架》的相继发布,全国各地都在积
- TDengine 做为 FLINK 数据源技术参考手册
TDengine (老段)
tdengineflink大数据涛思数据时序数据库数据库
ApacheFlink是一款由Apache软件基金会支持的开源分布式流批一体化处理框架,可用于流处理、批处理、复杂事件处理、实时数据仓库构建及为机器学习提供实时数据支持等诸多大数据处理场景。与此同时,Flink拥有丰富的连接器与各类工具,可对接众多不同类型的数据源实现数据的读取与写入。在数据处理的过程中,Flink还提供了一系列可靠的容错机制,有力保障任务即便遭遇意外状况,依然能稳定、持续运行。借
- TDengine 做 Google Looker Studio 数据源
TDengine (老段)
tdengine大数据时序数据库数据库googlecloud
LookerStudio,作为Google旗下的一个功能强大的报表和商业智能工具,前身名为GoogleDataStudio。在2022年的GoogleCloudNext大会上,Google将其更名为LookerStudio。这个工具凭借其丰富的数据可视化选项和多样化的数据连接能力,为用户提供了便捷的数据报表生成体验。用户可以根据预设的模板轻松创建数据报表,满足各种数据分析需求。由于其简单易用的操作
- Hadoop HA 架构
weixin_30569033
shell大数据
为什么要用集群?企业里面,多台机器伪分布式每一个角色都是一个进程HDFS:NNSNNDNYARN:RMNM大数据所有组件,都是主从架构master-slaveHDFS读写请求都是先到NN节点,但是,HBase读写请求不是经过master,建表和删除表是需要经过masterNN节点挂了,就不能提供对外服务(-put,-get)需要配置两个NN节点(实时的,任何时刻只有一台active对外,另外一台是
- 守护每一比特的安全——探索基于差分隐私的MySQL数据脱敏之道
墨夶
数据库学习资料2安全mysql数据库
在当今数字化时代,随着互联网和大数据技术的发展,数据的价值愈发凸显。然而,随之而来的个人隐私泄露风险也日益增加,成为社会广泛关注的问题之一。特别是在医疗、金融等领域,如何既能充分利用海量数据资源推动行业发展,又能有效保护用户隐私不被侵犯,成为了亟待解决的重要课题。本文将深入探讨一种创新的数据安全共享方案——基于差分隐私(DifferentialPrivacy,DP)的MySQL数据库实现方法,旨在
- 12.udp
就很对
udp网络协议网络
12.udp**1.UDP特性****2.UDP编程框架(C/S模式)****3.UDP发送接收函数****4.UDP编程练习**1.UDP特性连接特性:无链接,通信前无需像TCP那样建立连接。可靠性:不可靠,不保证数据按序到达、不保证数据无丢失或重复。数据传输:适合传输大数据,但实际传输受网络MTU等因素限制。2.UDP编程框架(C/S模式)服务器端流程:创建套接字:调用socket()函数,参
- 【大数据入门核心技术-Hive】(十一)HiveSQL数据分区
forest_long
大数据技术入门到21天通关大数据hivehadoop数据仓库hdfs
目录一、分区的概念二、创建分区1)静态分区1、单分区测试2、多分区测试2)动态分区3、动态分区和静态分区混合使用三、分区的其它操作1、恢复分区2、归档分区3、交换分区四、分区数据查询1、单分区数据查询2、多分区数据查询方法1:通过union方法2:通过or一、分区的概念数据分区的概念以及存在很久了,通常使用分区来水平分散压力,将数据从物理上移到和使用最频繁的用户更近的地方,以及实现其目的。hive
- 毕设开源 python大数据旅游数据分析可视化系统(源码分享)
bee_dc
毕业设计毕设大数据
文章目录0前言1课题背景2数据处理3数据可视化工具3.1django框架介绍3.2ECharts4Django使用echarts进行可视化展示(mysql数据库)4.1修改setting.py连接mysql数据库4.2导入数据4.3使用echarts可视化展示5实现效果5.1前端展示5.2后端展示6最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到
- 大数据“超能力”:数据安全和隐私该如何保障?
大数据在线
云静思园大数据数据安全数据隐私英特尔
一人人都喜欢超级英雄。不论是超人还是钢铁侠,又或者是小蜘蛛和绿巨人,几乎每一个超级英雄漫画及电影的粉丝,都曾为其不公遭遇打抱不平:“他们明明是在用超能力做好事,拯救人类的,为什么电影里的政府和平民会这么蠢,总对他们缺乏信任,满是提防。”这就是所谓的“叶公好龙”了,因为当你身边真出现了个能把卡车当皮球一样抛来抛去的人时,你的反应恐怕也好不到哪儿去,可能也巴不得有政府出面,逼他接受《超级英雄注册法案》
- Python爬虫基础知识:从零开始的抓取艺术
egzosn
python爬虫开发语言
在大数据时代,网络数据成为宝贵的资源,而Python爬虫则是获取这些数据的重要工具。本文旨在为初学者提供一份Python爬虫的入门指南,涵盖基础知识、常用库介绍、实战案例以及注意事项,帮助你快速上手,成为一名合格的“网络矿工”。一、Python爬虫概述1.1什么是爬虫?爬虫,也称为网络爬虫或蜘蛛,是一种自动抓取互联网信息的程序。它通过模拟人类浏览网页的行为,自动地遍历和抓取网络上的数据,常用于数据
- 探索Oracle数据库的多租户特性:架构、优势与实践
2401_85812026
数据库oracle架构
在云计算和大数据时代,多租户架构成为数据库设计中的一个重要趋势。Oracle数据库的多租户选项(Multitenant)允许单个数据库实例支持多个独立数据库(称为容器数据库和可插拔数据库),每个数据库都有自己的数据、配置和资源。这种设计提高了资源利用率、简化了数据库管理,并增强了安全性。本文将深入探讨Oracle多租户选项的架构、优势以及如何在实际环境中部署和使用。1.多租户选项概述Oracle多
- 「大数据」Kappa架构
吴维炜
AIGC架构设计师大数据架构kappaAIGC
Kappa架构是一种处理大数据的架构,它作为Lambda架构的替代方案出现。Kappa架构的核心思想是简化数据处理流程,通过使用单一的流处理层来同时处理实时和批量数据,从而避免了Lambda架构中需要维护两套系统(批处理层和速度层)的复杂性。核心功能:单一处理层:Kappa架构使用单一的流处理层来处理所有数据,无论是实时数据还是批量数据。数据重放:通过重放历史数据,Kappa架构能够重新计算出与批
- 新零售社交电商系统小程序功能开发详细解析
v.15889726201
零售小程序
现在的购物方式是越来越有趣了,新零售社交电商系统是互联网、大数据、人工智能的技术和咱们熟悉的传统零售深度结合后产生的。它整合线上线下渠道及数据,带来全方位、多渠道、个性化购物体验。借助实时库存管理、智能推荐和无缝购物体验等功能,打破传统电商与实体店界限,其具备以下显著特点:一、系统主要功能分销管理独家推广代码机制:在这个新零售社交电商系统里,每个经销商都有一个只属于自己的推广代码。把这个代码分享给
- Spark性能调优
大数据侠客
spark相关问题汇总及解决spark性能调优
1、前言在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark。大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更
- Python学习-九大数据类型整合,详细讲解
小伙儿.
Pythonpython开发语言学习
目录1.int(整型)2.float(浮点型)3.Bool(布尔类型)4.Str(字符串类型)5.None(空值)6.List(列表)7.Tuple(元组)8.Dict(字典)9.Set(集合)(字典,列表,元组,字符串知识点可能不全,可以参考本人之前发的博客进行学习,加油。)1.int(整型)特点和用途:1.可以表示正整数、负整数和零,没有小数部分。2.取值范围取决于您所使用的Python版本和
- [碎碎念] 重启学习与博客之旅-我的每日计划
言午coding
碎碎念碎碎念
好久没在写博客了,今天我下定决心,要重新开始。我给自己定了个小目标,从今天起,每天都要写一篇博客,然后发布到CSDN和掘金上。以下是我的计划。一、每天学点新东西以后每天早上,我都得抽出至少一个小时专门用来学新技术。我打算先列个学习清单,把一直想学但没时间学的技术都写上去,然后按照自己的兴趣和工作需要,一项一项地去攻克。比如说,我最近对人工智能和大数据分析特别感兴趣,所以打算每天看点相关的专业书,或
- Java 性能优化与新特性
来恩1003
Java从入门到精通java
Java学习资料Java学习资料Java学习资料一、引言Java作为一门广泛应用于企业级开发、移动应用、大数据等多个领域的编程语言,其性能和特性一直是开发者关注的重点。随着软件系统的规模和复杂度不断增加,对Java程序性能的要求也越来越高。同时,Java语言也在不断发展,每个版本都引入了许多新特性,这些新特性不仅提高了开发效率,还改善了代码的可读性和可维护性。本文将分别介绍Java性能优化的方法和
- pandas读取大数据量的Excel文件
兮知
python基础数据分析pandasexcel数据分析
使用pandas快速读取百万行Excel数据的一种方法是使用pandas中的read_excel函数。可以使用以下代码读取Excel文件:importpandasaspddf=pd.read_excel('file_name')这个适合少量数据,如果一旦数据几十万或者上百万,那么程序就很慢有几种优化方法只读取需要的列:使用read_excel函数的usecols参数来指定需要读取的列。这可以减少读
- 林子雨《大数据技术原理与应用》第五讲——NoSQL数据库
天才代号23
大数据数据库hadoopnosql大数据
林子雨《大数据技术原理与应用》第五讲——NoSQL数据库林子雨《大数据技术原理与应用》第五讲笔记NoSQL数据库特点灵活的可扩展性灵活的数据模型和云计算结合查询性能差未形成通用的行业标准维护更加复杂NoSQL数据库有四大类型键值数据库:redis列族数据库:HBase、Cassandra文档数据库:MongoDB图数据库:Neo4j键值数据库数据模型:键是一个字符串对象,值可以是任意类型的对象典型
- OLAP引擎比较
小手追梦
hadooprpcjava
一,sparksql与dorisspark虽然是一个计算引擎,但sparksql也支持符合通用语法的sql查询,延迟为分钟级。doris是一个OLAP数据库,支持对大数据的复杂查询,延迟为秒级。doris比sparksql快,主要原因在于针对场景不同导致的架构不同。sparksql启动一个查询,需要进行资源调度、任务调度、任务分发,耗时更久。doris是常驻进程,启动一个doris查询后,快速的对
- 大数据组件ClickHouse介绍(场景、优劣势、性能)
坚持是一种态度
大数据开发ClickHouse大数据clickhouse数据库列式数据库
大数据组件ClickHouse介绍简介使用场景优势与劣势优势劣势性能单个查询吞吐量处理短查询的延时时间处理大量短查询数据写入性能查询性能简介clickhouse是一个高性能的列式存储分析数据库管理系统,由俄罗斯搜索引擎公司yandex开发。clickhouse具有以下特点高性能:clickhouse优化了查询和数据压缩算法,支持多维度数据分析和快速聚合查询。分布式:clickhouse采用共享无状
- DB2-Db2StreamingChangeEventSource
DataLu
DB2-debezium数据库数据库开发大数据开源
提示:Db2StreamingChangeEventSource类主要用于从IBMDb2数据库中读取变更数据捕获(CDC,ChangeDataCapture)信息。CDC是一种技术,允许系统跟踪数据库表中数据的更改,这些更改可以是插入、更新或删除操作。在大数据和实时数据处理场景中,CDC可以用来同步数据到其他系统,比如数据仓库、数据湖或者流处理平台如ApacheKafka。文章目录前言一、核心功能
- MySQL实战教程:从小白到大神的进阶之路!
奔跑吧邓邓子
项目实战mysql数据库
目录一、MySQL概述1、MySQL简介1.1MySQL的历史背景1.2MySQL的特点1.3MySQL的应用场景1.4MySQL的版本2、MySQL发展历程2.1MySQL的起源2.2MySQL的早期发展2.3MySQL的成熟与普及2.4MySQL的商业化与收购2.5MySQL的持续创新3、MySQL应用场景3.1Web应用程序3.2企业级应用3.3大数据分析3.4移动应用3.5云计算3.6物联
- 【详细讲解】hive优化
songqq27
大数据hive
1、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- 在K8s中部署动态nfs存储provisioner
超级阿飞
k8sclusterkubernetes容器云原生nfs
背景之前,我已经在一台workernode上安装了locallvm的provisioner来模拟需要本地高IOPS的数据库等stafeful应用的实现。为了后续给虚拟机里的K8s集群安装可用的metrics和logs监控系统(metrics和logs的时序数据库需要永久存储),特为K8s集群提供基于nfs的文件服务器一台,并安装nfsprovisioner,以便实现动态分配nfsvolume给po
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比