- 计算机网络八股总结
Petrichorzncu
八股总结计算机网络笔记
这里写目录标题网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型)==三次握手和四次挥手具体过程及原因==三次握手四次挥手TCP/IP协议组成==UDP协议与TCP/IP协议的区别==Http协议相关知识网络地址,子网掩码等相关计算网络模型划分(五层和七层)及每一层的功能五层网络模型应用层:负责处理网络应用程序,如电子邮件、文件传输和网页浏览。主要协议包括HTTP、FTP
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- TextCNN:文本卷积神经网络模型
一只天蝎
编程语言---Pythoncnn深度学习机器学习
目录什么是TextCNN定义TextCNN类初始化一个model实例输出model什么是TextCNNTextCNN(TextConvolutionalNeuralNetwork)是一种用于处理文本数据的卷积神经网(CNN)。通过在文本数据上应用卷积操作来提取局部特征,这些特征可以捕捉到文本中的局部模式,如n-gram(连续的n个单词或字符)。定义TextCNN类importtorch.nnasn
- ok虚拟化
qq_25467441
网络
核心S12700E汇聚S6730-H接入S5731-H在云数据中心中,虚拟机迁移时必须保持IP地址不变,并确保TCP连接不中断。因此,虚拟机的动态迁移只能在同一二层网络内进行,无法跨越二层网络。这一需求促使数据中心的网络架构发生了重大变革,东西向流量逐渐超过南北向流量,推动了扁平化的大二层网络模型的发展。由于虚拟机迁移依赖二层网络,传统的三层架构(接入层、汇聚层、核心层)逐渐失去其适用性。传统架构
- 每天五分钟玩转深度学习框架PyTorch:获取神经网络模型的参数
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能模型参数python
本文重点当我们定义好神经网络之后,这个网络是由多个网络层构成的,每层都有参数,我们如何才能获取到这些参数呢?我们将再下面介绍几个方法来获取神经网络的模型参数,此文我们是为了学习第6步(优化器)。获取所有参数Parametersfromtorchimportnnnet=nn.Sequential(nn.Linear(4,2),nn.Linear(2,2))print(list(net.paramet
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- Python高层神经网络 API库之Keras使用详解
Rocky006
pythonkeras开发语言
概要随着深度学习在各个领域的广泛应用,许多开发者开始使用各种框架来构建和训练神经网络模型。Keras是一个高层神经网络API,使用Python编写,并能够运行在TensorFlow、CNTK和Theano之上。Keras旨在简化深度学习模型的构建过程,使得开发者能够更加专注于实验和研究。本文将详细介绍Keras库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- 微积分在神经架构搜索中的应用
光剑书架上的书
深度强化学习原理与实战元学习原理与实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
微积分在神经架构搜索中的应用1.背景介绍随着深度学习技术的飞速发展,神经网络模型的复杂度也在不断提高,从最初的简单全连接网络,到如今的卷积神经网络、循环神经网络、注意力机制等各种复杂的神经网络架构。这些先进的神经网络架构大大提高了深度学习模型的性能,但同时也给神经网络的设计和调优带来了巨大的挑战。手工设计神经网络架构通常需要大量的专业知识和经验积累,过程繁琐复杂,难以推广。为了解决这一问题,神经架
- 深度解析:从概念到变革——Transformer大模型的前世今生以及大模型预备知识讲解[知存科技]
汀、人工智能
LLM技术汇总transformer深度学习人工智能自然语言处理LLMattention机制编码器解码器
深度解析:从概念到变革——Transformer大模型的前世今生点击:知存科技相关课程推荐知存科技是全球领先的存内计算芯片企业。针对AI应用场景,在全球率先商业化量产基于存内计算技术的神经网络芯片。凭借颠覆性的技术创新,知存科技突破传统计算架构局限,利用存储与计算的物理融合大幅减少数据搬运,在相同工艺条件下将AI计算效率提升2个数量级,充分满足快速发展的神经网络模型指数级增长的算力需求。相关链接推
- 亚马逊云科技大语言模型加速OCR应用场景发展
热爱coding的星辰
ocr自然语言处理人工智能aws
大语言模型是一种基于神经网络的自然语言处理技术,它能够学习和预测自然语言文本中的规律和模式,可以理解和生成自然语言的人工智能程序。在大型语言模型中,神经网络模型可以通过学习大量的语言数据,自动提取自然语言文本中的特征和模式,以实现自然语言的理解和生成。OCR技术(OpticalCharacterRecognition)是一种广泛应用的人工智能技术,在大语言模型基础上,能够从文档或图像中提取文本、手
- 深度学习框架相关-Python模块的介绍和使用---torch
sccum
Python常用库的介绍和使用深度学习python人工智能
文章摘要:'''1.torch模块,是一个开源的深度学习框架,主要用于构建和训练神经网络。PyTorch的设计目标是提供灵活且高效的工具集,用于深度学习和科学计算;2.下面主要介绍torch模块的五个功能:数据加载和处理,GPU加速,建立网络模型,模型的保存和加载,梯度更新和参数优化;上面功能主要用到的子模块如下:torch.utils.data、torch.cuda、torch.nn、torch
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- Linux系统是如何收发网络包的
一个木的感情的小卷卷
计算机网络git网络协议数据库
Linux系统是如何收发网络包的参考资源小林coding2022.3.29OSI网络模型解决不同设备网络互联中的兼容性问题->解决不同设备在网络互联中的兼容性问题国际标准化组织制定了开放式系统互联通信参考模型->OSI网络模型该模型一共有七层应用层负责给应用程序提供统一的接口表示层负责把数据转换成兼容另一个系统能识别的格式会话层负责建立管理终止表现层实体之间的通信会话传输层负责端到端的数据传输网络
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 计算机网络模型介绍——OSI七层模型 vs TCP/IP五层模型 及各层协议
2020拯救世界
OSI七层模型vsTCP/IP五层模型及各层协议一.OSI七层模型OSI七层模型(OpenSystemInterconnect)即开放系统互连参考模型,是由ISO(InternationalOrganizationforStandardization)国际标准化组织提出的,用于计算机或通信系统间互联的标准体系。从上到下可分为七层:每一层都完成特定的功能,并为上一层提供服务,并使用下层所提供的服务。
- 域与活动目录
小Z资本
网安学习网络服务器运维安全
工作组:对等网络模型,不依赖中央控制服务器,适合小型网络\\计算机名\\IP地址来访问该计算机的共享资源域(domain):所有计算机成员被集中管理每个域都有一个或多个域控制器设置域:安装AD,将至少一台服务器提升为域控制器域结构:单域:一个或多个DC域树:一个或多个相关域的集合。共享一个连续的命名空间。平级或有层次域林:一个或多个域树的集合。每个树命名空间独立,但共享一个全局目录架构。林是AD的
- 网络模型与ARP详解
zhj574182446
网络协议网络协议网络
自学网络协议学到什么程度才算掌握,思考很久并在网上阅读了一番后,悟出了:不同程序员,学得程度不一样。一个java程序员,掌握基本的网络模型即可,从访问一个google走过的路由,什么时候涉及什么协议。了解了大概的网络模型之后,你在编程中基本所需的已足够。再深入了解一些原理的东西,比如IP选址、ARP实现与ARP攻防。我学习的网络模型总结:从我访问一个google开始,在浏览器中访问http://w
- 为什么我们会产生共情?
葭芷之畔
Bower(1981)提出了关于情绪记忆的理论模型——情感联想网络理论。该理论认为,人们的记忆网络模型不仅包含对语义的记忆,还与情感记忆相连接,语义和情感记忆交叉形成结点是一个富含语义和情感结点的网络。若外界刺激激活了其中的一个结点后,语义和情感结点就将同时被激活。这就使得人们偏向于提取与自身情感相一致的信息。
- Docker网络模型深度解析教程
man2017
运维docker网络容器
Docker网络模型深度解析教程1.引言目的与目标读者本教程旨在为初学者和有一定经验的开发者提供一份详尽的指南,以理解Docker网络模型的工作原理及其在实际部署中的应用。适合对Docker感兴趣的技术人员、运维工程师以及开发人员。Docker简介Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上。D
- Docker 网络模型深度解析
乌南竹
docker网络容器
Docker是现代应用程序开发和部署中广泛使用的容器化平台,它的核心优势之一在于其网络模型的灵活性与功能性。Docker网络模型的设计旨在支持容器之间的通信,并确保容器可以在多种网络环境中安全、可靠地运行。在本文中,我们将对Docker网络模型进行深度解析,了解其组成部分、主要类型、工作原理以及常见的网络管理策略。一、Docker网络的基本概念在Docker中,网络允许容器彼此之间以及与外部世界进
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- 设备仪器仪表盘读数识别系统 YOLOv5
燧机科技SuiJi
YOLO机器学习人工智能深度学习
设备仪器仪表盘读数识别系统基于YoLov8网络模型智能视觉分析技术,设备仪器仪表盘读数识别系统自动识别指针型仪表读数。设备仪器仪表盘读数识别系统对工业仪表盘数据进行实时读取,不需人为干预当监测到指针仪表读数数据异常时,立即自动抓拍告警提醒后台值班管理人员及时处理,避免意外的发生。设备仪器仪表盘读数识别系统主要适用于油田、工厂等场景需要值班人员及时统计指针仪表读数信息。设备仪器仪表盘读数识别系统通过
- 做大模型 千万别买苹果笔记本电脑
路人与大师
电脑
对于大模型(如大型神经网络模型)的训练和推理,苹果笔记本电脑(尤其是搭载AppleSilicon芯片的MacBook)确实存在一些限制,这些问题可能让开发者在处理大规模AI项目时感到不适合。以下是一些主要原因:1.GPU不适合深度学习AppleSiliconGPU限制:Apple自家芯片(如M1和M2)的GPU架构与传统的NVIDIAGPU(通常是深度学习和大模型训练的首选)不同。NVIDIA的C
- Docker网络模型深度解析
109702008
网络docker人工智能学习
Docker网络模型是Docker容器化技术的重要组成部分,它通过不同的网络驱动来实现容器间及容器与外部环境的通信。深入理解Docker网络模型有助于更好地管理和优化容器化应用。下面我们将详细探讨Docker的主要网络模式及其实现机制。1.Docker网络驱动概述Docker提供了多种网络驱动,用于满足不同的网络需求。主要的网络驱动包括:-Bridge(桥接网络)-Host(主机网络)-None-
- PyTorch Geometric(torch_geometric)简介
小桥流水---人工智能
机器学习算法深度学习人工智能pytorch人工智能python
在深入探讨PyTorchGeometric(通常简称为PyG)之前,我们先了解一下它的背景和应用。PyG是基于PyTorch的一个扩展库,专为图数据和图网络模型设计。图网络是深度学习领域的一种强大工具,它能够处理结构化数据,如社交网络、分子结构、交通网络等。PyTorchGeometric的主要功能数据处理与加载:图数据的简化表示:PyG提供了一种高效的方式来表示和存储图数据。主要是通过Data对
- 【技术博客】生成式对抗网络模型综述
MomodelAI
34-生成式对抗网络模型综述作者:张真源GANGAN简介生成式对抗网络(Generativeadversarialnetworks,GANs)的核心思想源自于零和博弈,包括生成器和判别器两个部分。生成器接收随机变量并生成“假”样本,判别器则用于判断输入的样本是真实的还是合成的。两者通过相互对抗来获得彼此性能的提升。判别器所作的其实就是一个二分类任务,我们可以计算他的损失并进行反向传播求出梯度,从而
- 20.神经网络 - 搭建小实战和 Sequential 的使用
椰皮糖
深度学习神经网络人工智能深度学习
神经网络-搭建小实战和Sequential的使用在PyTorch中,Sequential是一个容器(container)类,用于构建神经网络模型。它允许你按顺序(sequential)添加不同的网络层,并将它们串联在一起,形成一个网络模型。这样做可以方便地定义简单的前向传播过程,适用于许多基本的网络结构。Sequential的优点之一是其简洁性和易读性,特别适用于简单的网络结构。然而,对于更复杂的
- 深度学习与OpenCV:解锁计算机视觉的无限可能
程序员-李旭亮
深度学习
在科技日新月异的今天,计算机视觉作为人工智能领域的一颗璀璨明珠,正以前所未有的速度改变着我们的生活与工作方式。而《深度学习》与OpenCV,作为这一领域的两大重要工具,更是为计算机视觉的入门与深入探索铺设了坚实的基石。本文将带您一窥这两者的魅力,探索它们如何携手开启计算机视觉的无限可能。深度学习:智能的催化剂深度学习,作为机器学习的一个分支,其核心在于通过构建深层次的神经网络模型,模拟人脑的学习过
- 在STM32上实现嵌入式人工智能应用
嵌入式详谈
stm32人工智能嵌入式硬件
引言随着微控制器的计算能力不断增强,人工智能(AI)开始在嵌入式系统中扮演越来越重要的角色。STM32微控制器由于其高性能和低功耗的特性,非常适合部署轻量级AI模型。本文将探讨如何在STM32平台上实现深度学习应用,特别是利用STM32Cube.AI工具链将训练好的神经网络模型部署到STM32设备上。环境准备硬件选择:STM32F746GDiscoverykit,具备足够的计算资源和内存支持复杂模
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR