机器学习---半监督学习简单示例(标签传播算法)

1. 使用半监督学习方法 Label Spreading 在一个生成的二维数据集上进行标签传播

import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import label_propagation
from sklearn.datasets import make_circles

# generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False) 
# sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8)
# make_circle和make_moom产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据
outer, inner = 0, 1
labels = np.full(n_samples, -1.) # 形状n_samples,数据-1
labels[0] = outer
labels[-1] = inner

# Learn with LabelSpreading
label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=0.8) # kernel : {‘knn’, ‘rbf’, callable}
label_spread.fit(X, labels)

# Plot output labels
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', # s点的大小,lw线宽
            marker='s', lw=0, label="outer labeled", s=10)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c',
            marker='s', lw=0, label='inner labeled', s=10)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange',
            marker='.', label='unlabeled')
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Raw data (2 classes=outer and inner)")

plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels) # 将结构数据转化为ndarray
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy',
            marker='s', lw=0, s=10, label="outer learned")
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c',
            marker='s', lw=0, s=10, label="inner learned")
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Labels learned with Label Spreading (KNN)")

plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()

这段代码演示了使用半监督学习方法 Label Spreading 在一个生成的二维数据集上进行标签传播的

过程。Label Spreading 是一种用于利用未标记数据来改善学习模型的技术。

使用 make_circles 函数生成一个包含200个样本的二维数据集,这个数据集形成了两个圆形:一

个内圈和一个外圈。这些数据点将用于演示 Label Spreading 算法的效果。

为了进行半监督学习,我们需要一些已标记的数据。在这个示例中,我们将数据集中的第一个和最

后一个数据点分别标记为外圈和内圈,用数字0和1表示。其余数据点的标签被初始化为-1,表示它

们是未标记的。

使用 LabelSpreading 类来应用标签传播算法。通过设置 kernel='knn 和 alpha=0.8,算法将基于最

近邻(KNN)核来传播标签,其中 alpha 参数控制标签传播过程中的平滑程度。

通过调用 fit 方法,标签传播算法使用已标记和未标记的数据来学习,并预测所有未标记数据点的

标签。代码最后部分使用 matplotlib 生成了两个子图。第一个子图展示了原始数据及其标记,第二

个子图展示了使用 Label Spreading 算法学习得到的标签。这通过比较两个子图来直观展示标签传

播算法的效果。

通过这个示例,可以看到即使只有极少数的数据点被标记,Label Spreading 也能有效地利用数据

集的结构信息来预测未标记数据点的标签,展示了半监督学习在利用未标记数据上的潜力。

机器学习---半监督学习简单示例(标签传播算法)_第1张图片

2. 使用半监督学习技术(特别是 Label Spreading)和支持向量机(SVM)在鸢尾花

(Iris)数据集上进行分类

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
from sklearn.semi_supervised import label_propagation

rng = np.random.RandomState(0)

iris = datasets.load_iris()

X = iris.data[:, :2]
y = iris.target

# step size in the mesh
h = .02

y_30 = np.copy(y)
y_30[rng.rand(len(y)) < 0.6] = -1
y_50 = np.copy(y)
y_50[rng.rand(len(y)) < 0.9] = -1
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
ls30 = (label_propagation.LabelSpreading().fit(X, y_30),
        y_30)
ls50 = (label_propagation.LabelSpreading().fit(X, y_50),
        y_50)
ls100 = (label_propagation.LabelSpreading().fit(X, y), y)
rbf_svc = (svm.SVC(kernel='rbf', gamma=.5).fit(X, y), y)

# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))

# title for the plots
titles = ['Label Spreading 30% data',
          'Label Spreading 50% data',
          'Label Spreading 0% data',
          'SVC with rbf kernel']

color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} # (1, 1, 1)白色

for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)):
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    plt.subplot(2, 2, i + 1)
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # 扁平化操作

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
    plt.axis('off')

    # Plot also the training points
    colors = [color_map[y] for y in y_train]
    plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')

    plt.title(titles[i])

plt.suptitle("Unlabeled points are colored white", y=0.1)
plt.show()

这段代码演示了如何使用半监督学习技术(特别是 Label Spreading)和支持向量机(SVM)在鸢

尾花(Iris)数据集上进行分类。这个示例展示了在不同比例的数据被标记的情况下,这些算法的

表现。从 `sklearn.datasets` 加载鸢尾花数据集。仅使用前两个特征(为了方便在二维平面上绘

图)。y_30 和 y_50 分别是复制的标签数组,其中 60% 和 90% 的标签被随机置为未知(-1),

用于模拟半监督学习场景。

使用 LabelSpreading 模型分别训练三个不同的数据集(30%、50% 标签数据和100% 标签数据)

以及一个使用 RBF 核的 SVM 模型进行比较。不对数据进行缩放,因为目的是要在图中展示支持

向量。为了绘制决策边界,创建一个网格覆盖数据集的全部范围。使用 numpy.meshgrid 函数生成

网格点的坐标矩阵。

对每个分类器和训练集组合,预测整个网格上的点的标签。使用 plt.contourf 绘制决策区域,并用

不同的颜色表示不同的类别。未标记的点(在 y_30 和 y_50 中被标记为 -1 的点)在图上用白色表

示。使用 plt.scatter 绘制训练点,颜色由 y_train 决定,边界颜色设为黑色以便区分。

为每个子图设置标题以区分不同的训练情况。使用 plt.suptitle 设置总标题。

最终显示图形,展示在不同标签数据比例下的分类效果和决策边界。

机器学习---半监督学习简单示例(标签传播算法)_第2张图片

3. 使用标签传播(Label Spreading)算法在一个合成的二维数据集上进行半监督学习

import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import label_propagation
from sklearn.datasets import make_circles

# generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False) 
# sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8)
# make_circle和make_moom产生二维二元分类数据集来测试某些算法的性能,可以为数据集添加噪声,可以为二元分类器产生一些球形判决界面的数据
outer, inner = 0, 1
labels = np.full(n_samples, -1.) # 形状n_samples,数据-1
labels[0] = outer
labels[-1] = inner

# Learn with LabelSpreading
label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=0.8) # kernel : {‘knn’, ‘rbf’, callable}
label_spread.fit(X, labels)

# Plot output labels
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', # s点的大小,lw线宽
            marker='s', lw=0, label="outer labeled", s=10)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c',
            marker='s', lw=0, label='inner labeled', s=10)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange',
            marker='.', label='unlabeled')
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Raw data (2 classes=outer and inner)")

plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels) # 将结构数据转化为ndarray
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy',
            marker='s', lw=0, s=10, label="outer learned")
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c',
            marker='s', lw=0, s=10, label="inner learned")
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Labels learned with Label Spreading (KNN)")

plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()

这段代码演示了如何使用标签传播(Label Spreading)算法在一个合成的二维数据集上进行半监

督学习。标签传播是一种半监督学习算法,它可以利用少量的已标记数据和大量的未标记数据来训

练模型。使用 make_circles 函数生成一个由两个圆形组成的数据集,总共有200个样本。这些样本

被用来模拟一个简单的二分类问题。

初始化一个全是 -1 的标签数组,表示大部分样本都是未标记的。将第一个样本的标签设置为

outer(外圈),最后一个样本的标签设置为 inner(内圈),以此模拟已知的少量标签信息。

创建一个 LabelSpreading 模型实例,使用K近邻(KNN)作为核函数,并设置 alpha=0.8。

使用这个模型和初始的标签来训练数据集。算法将尝试根据少量的已标记数据和数据的分布,推断

出未标记数据的标签。

使用 matplotlib 创建两个子图。第一个子图展示原始数据和初始的少量标签。第二个子图展示标签

传播算法学习到的标签。在第一个子图中,已标记的外圈和内圈样本分别用不同颜色表示,未标记

的样本用第三种颜色表示。在第二个子图中,根据标签传播算法的结果,所有样本都被标记,并用

相应的颜色表示外圈和内圈。通过这种方式,可以直观地看到标签传播算法是如何利用少量的标签

信息来推断整个数据集的标签分布的。

你可能感兴趣的:(机器学习,机器学习)