《Redis核心技术与实战》学习笔记0——开篇词 | 这样学Redis,才能技高一筹

开篇词 | 这样学Redis,才能技高一筹

文章目录

  • 开篇词 | 这样学Redis,才能技高一筹
    • 为什么懂得了一个个技术点,却依然用不好 Redis?

作为键值数据库,Redis 的应用非常广泛,如果你是后端工程师,我猜你出去面试,八成都会被问到与它相关的性能问题。比如说,为了保证数据的可靠性,Redis 需要在磁盘上读写 AOF 和 RDB,但在高并发场景里,这就会直接带来两个新问题:一个是写 AOF 和RDB 会造成 Redis 性能抖动,另一个是 Redis 集群数据同步和实例恢复时,读 RDB 比较慢,限制了同步和恢复速度。

那这个问题有没有好的解决方法呢?哈哈,这里我卖了个关子。其实,一个可行的解决方案就是使用非易失内存 NVM,因为它既能保证高速的读写,又能快速持久化数据。

同样是使用 Redis,但是不同公司的“玩法”却不太一样,比如说,有做缓存的,有做数据库的,也有用做分布式锁的。不过,他们遇见的“坑”,总体来说集中在四个方面:

  • CPU 使用上的“坑”,例如数据结构的复杂度、跨 CPU 核的访问;
  • 内存使用上的“坑”,例如主从同步和 AOF 的内存竞争;
  • 存储持久化上的“坑”,例如在 SSD 上做快照的性能抖动;
  • 网络通信上的“坑”,例如多实例时的异常网络丢包。

随着这些深入的研究、实战操作、案例积累,我拥有了一套从原理到实战的 Redis 知识总结。这一次,我想把我多年积累的经验分享给你。

为什么懂得了一个个技术点,却依然用不好 Redis?

很多同学都是带着一个个具体的问题来学习Redis的,比如说,Redis 数据怎么做持久化?集群方案应该怎么做?这些问题当然很重要,但是,如果你只是急于解决这些细微的问题,你的 Redis 使用能力就很难得到质的提升。

这些年,在和国内大厂的合作过程中,我发现,很多技术人都有一个误区,那就是,只关注零散的技术点,没有建立起一套完整的知识框架,缺乏系统观,但是,系统观其实是至关重要的。从某种程度上说,在解决问题时,拥有了系统观,就意味着你能有依据、有章法地定位和解决问题。

说到这儿,我想跟你分享一个小案例。

现在,很多大厂的 Redis 服务面临的请求规模很大,因此,在评估性能时,仅仅看平均延迟已经不够了。我简单举个例子,假设 Redis 处理了 100 个请求,99 个请求的响应时间都是 1s,而有一个请求的响应时间是 100s。那么,如果看平均延迟,这 100 个请求的平均延迟是 1.99s,但是对于这个响应时间是 100s 的请求而言,它对应的用户体验将是非常糟糕的。如果有 100 万个请求,哪怕只有 1% 的请求是 100s,这也对应了 1 万个糟糕的用户体验。这 1% 的请求延迟就属于长尾延迟。

我之前在做一个项目的时候,要把 Redis 的长尾延迟维持在一定阈值以下。你可以想一下,如果是你,你会怎么做呢?

刚开始的时候,我有些无从下手,因为那个时候,我并不清楚跟长尾延迟相关的东西都有哪些,只能一个个摸索。

首先,我对 Redis 的线程模型做了分析,我发现,对于单线程的 Redis 而言,任何阻塞性操作都会导致长尾延迟的产生。接着,我又开始寻找可能导致阻塞的关键因素,一开始想到的是网络阻塞,但随着对 Redis 网络框架的理解,我知道 Redis 网络 IO 使用了 IO 复用机制,并不会阻塞在单个客户端上。

再后来,我又把目光转向了键值对数据结构、持久化机制下的 fork 调用、主从库同步时的AOF 重写,以及缓冲区溢出等多个方面。绕了一大圈子之后,这条影响长尾延迟的“证据链”才得以形成。这样一来,我也系统地掌握了影响 Redis 性能的关键因素路径,之后再碰到类似的问题时,我就可以轻松解决了。

那么,如何高效地形成系统观呢?我们做事情一般都希望“多快好省”,说白了,就是希望花很少的时间掌握更丰富的知识和经验,解决更多的问题。听起来好像很难,但实际上,只要你能抓住主线,在自己的脑海中绘制一幅 Redis 全景知识图,这完全是可以实现的。而这,也是我在设计这门课时,所遵循的思路。

那么,所谓的 Redis 知识全景图都包括什么呢?简单来说,就是“两大维度,三大主线”。

《Redis核心技术与实战》学习笔记0——开篇词 | 这样学Redis,才能技高一筹_第1张图片
“两大维度”就是指系统维度和应用维度,“三大主线”也就是指高性能、高可靠和高可扩展(可以简称为“三高”)。

首先,从系统维度上说,你需要了解 Redis 的各项关键技术的设计原理,这些能够为你判断和推理问题打下坚实的基础,而且,你还能从中掌握一些优雅的系统设计规范,例如run-to-complete 模型、epoll 网络模型,这些可以应用到你后续的系统开发实践中。

这里有一个问题是,Redis 作为庞大的键值数据库,可以说遍地都是知识,一抓一大把,我们怎么能快速地知道该学哪些呢?别急,接下来就要看“三大主线”的魔力了。

别看技术点是零碎的,其实你完全可以按照这三大主线,给它们分下类,就像图片中展示的那样,具体如下:

  • 高性能主线,包括线程模型、数据结构、持久化、网络框架;
  • 高可靠主线,包括主从复制、哨兵机制;
  • 高可扩展主线,包括数据分片、负载均衡。

你看,这样,你就有了一个结构化的知识体系。当你遇见这些问题时,就可以按图索骥,快速找到影响这些问题的关键因素,这是不是非常省时省力呢?

其次,在应用维度上,我建议你按照两种方式学习: “应用场景驱动”和“典型案例驱动”,一个是“面”的梳理,一个是“点”的掌握。

我们知道,缓存和集群是 Redis 的两大广泛的应用场景。在这些场景中,本身就具有一条显式的技术链。比如说,提到缓存场景,你肯定会想到缓存机制、缓存替换、缓存异常等一连串的问题。

不过,并不是所有的东西都适合采用这种方式,比如说 Redis 丰富的数据模型,就导致它有很多零碎的应用场景,很多很杂。而且,还有一些问题隐藏得比较深,只有特定的业务场景下(比如亿级访问压力场景)才会出现,并不是普遍现象,所以,我们也比较难于梳理出结构化的体系。

这个时候,你就可以用“典型案例驱动”的方式学习了。我们可以重点解读一些对 Redis的“三高”特性影响较大的使用案例,例如,多家大厂在万亿级访问量和万亿级数据量的情况下对 Redis 的深度优化,解读这些优化实践,非常有助于你透彻地理解 Redis。而且,你还可以梳理一些方法论,做成 Checklist,就像是一个个锦囊,之后当你遇到问题的时候,就可以随时拿出自己的“锦囊妙计”解决问题了。

最后,我还想跟你分享一个非常好用的技巧。我梳理了一下这些年遇到的、看到的 Redis各大典型问题,同时结合相关的技术点,手绘了一张 Redis 的问题画像图。无论你遇见什么问题,都可以拿出来这张图,这样你就能快速地按照问题来查找对应的 Redis 主线模块了,然后再进一步定位到相应的技术点上。

《Redis核心技术与实战》学习笔记0——开篇词 | 这样学Redis,才能技高一筹_第2张图片

举个例子,如果你遇到了 Redis 的响应变慢问题,对照着这张图,你就可以发现,这个问题和 Redis 的性能主线相关,而性能主线又和数据结构、异步机制、RDB、AOF 重写相关。找到了影响的因素,解决起来也就很容易了。

另外,在学习和使用的过程中,你完全可以根据你自己的方式,完善这张画像图,把你自己实践或掌握到的新知识点,按照“问题 --> 主线 --> 技术点”的方式梳理出来,放到这张图上。这样一来,你的积累越来越多,画像也会越来越丰富。以后在遇到问题的时候,就很容易解决了。

最后,我想说,Redis 是一个非常优秀的系统,它在 CPU 使用、内存组织、存储持久化和网络通信这四大方面的设计非常经典,而这些,基本涵盖了一个优秀的后端系统工程师需要掌握的核心知识和关键技术。希望你通过这个课程的学习,成长为一名优秀的系统工程师。

不过,一个人单枪匹马地去学习,往往很难坚持下去。如果你身边也有在使用 Redis 的同学,我希望你能帮忙把这个文章分享给他 / 她,你们可以一起学习,互相鼓励。

你可能感兴趣的:(Redis,redis,学习,笔记,缓存,中间件)