13 数据仓库设计

1.数据仓库分层

该项目数据分层如下:
13 数据仓库设计_第1张图片

2.数据仓库构建流程

13 数据仓库设计_第2张图片

2.1 数据调研

数据调研重点做两项工作,分别是业务调研和需求分析。

2.1.1 业务调研

业务调研主要目标是熟悉业务流程、熟悉业务数据。
熟悉业务流程要做到,明确每个业务的具体流程,需要将该业务所包含的每个业务过程一一列举出来。
熟悉业务数据要做到,将数据与业务过程对应起来,明确每个业务过程会对哪些表的数据产生影响,以及产生什么影响。产生的影响,需要具体到,是新增一条数据,还是修改一条数据,并且需要明确新增的内容或者是修改的逻辑。
下面业务电商中的交易为例进行演示,交易业务涉及到的业务过程有买家下单、买家支付、卖家发货,买家收货,具体流程如下图。
13 数据仓库设计_第3张图片

2.1.2 需求分析

典型的需求指标如,最近一天各省份手机品类订单总额。
分析需求时,需要明确需求所需的业务过程及维度,例如该需求所需的业务过程就是买家下单,所需的维度有日期,省份,商品品类。

2.1.3 总结

做完业务分析和需求分析之后,要保证每个需求都能找到与之对应的业务过程及维度。若现有数据无法满足需求,则需要和业务方进行沟通,例如某个页面需要新增某个行为的埋点。

2.2 明确数据域

数据仓库模型设计除横向的分层外,通常也需要根据业务情况进行纵向划分数据域。
划分数据域的意义是便于数据的管理和应用。
通常可以根据业务过程或者部门进行划分,本项目根据业务过程进行划分,需要注意的是一个业务过程只能属于一个数据域。
下面是本数仓项目所需的所有业务过程及数据域划分详情。

数据域 业务过程
交易域 加购、下单、取消订单、支付成功、退单、退款成功
流量域 页面浏览、启动应用、动作、曝光、错误
用户域 注册、登录
互动域 收藏、评价
工具域 优惠券领取、优惠券使用(下单)、优惠券使用(支付)

2.3 构建业务总线矩阵

业务总线矩阵中包含维度模型所需的所有事实(业务过程)以及维度,以及各业务过程与各维度的关系。矩阵的行是一个个业务过程,矩阵的列是一个个的维度,行列的交点表示业务过程与维度的关系。
13 数据仓库设计_第4张图片
一个业务过程对应维度模型中一张事务型事实表,一个维度则对应维度模型中的一张维度表。所以构建业务总线矩阵的过程就是设计维度模型的过程。但是需要注意的是,总线矩阵中通常只包含事务型事实表,另外两种类型的事实表需单独设计。

2.4 明确统计指标

明确统计指标具体的工作是,深入分析需求,构建指标体系。构建指标体系的主要意义就是指标定义标准化。所有指标的定义,都必须遵循同一套标准,这样能有效的避免指标定义存在歧义,指标定义重复等问题。

2.3.1 指标体系相关概念

  1. 原子指标。原子指标基于某一业务过程的度量值,是业务定义中不可再拆解的指标,原子指标的核心功能就是对指标的聚合逻辑进行了定义。我们可以得出结论,原子指标包含三要素,分别是业务过程、度量值和聚合逻辑。
    例如订单总额就是一个典型的原子指标,其中的业务过程为用户下单、度量值为订单金额,聚合逻辑为sum()求和。需要注意的是原子指标只是用来辅助定义指标一个概念,通常不会对应有实际统计需求与之对应。
  2. 派生指标。派生指标基于原子指标,其与原子指标的关系如下图所示。
    13 数据仓库设计_第5张图片与原子指标不同,派生指标通常会对应实际的统计需求。
  3. 衍生指标
    衍生指标是在一个或多个派生指标的基础上,通过各种逻辑运算复合而成的。例如比率、比例等类型的指标。衍生指标也会对应实际的统计需求。
    13 数据仓库设计_第6张图片

2.3.2 指标体系对数仓建模的意义

通过上述两个具体的案例可以看出,绝大多数的统计需求,都可以使用原子指标、派生指标以及衍生指标这套标准去定义。
当统计需求足够多时,必然会出现部分统计需求对应的派生指标相同的情况。这种情况下,我们就可以考虑将这些公共的派生指标保存下来,这样做的主要目的就是减少重复计算,提高数据的复用性。这些公共的派生指标统一保存在数据仓库的DWS层。

2.4维度模型设计

维度模型的设计参照上述得到的业务总线矩阵即可。事实表存储在DWD层,维度表存储在DIM层。

2.5 汇总模型设计

汇总模型的设计参考上述整理出的指标体系(主要是派生指标)即可。汇总表与派生指标的对应关系是,一张汇总表通常包含业务过程相同、统计周期相同、统计粒度相同的多个派生指标。

你可能感兴趣的:(数据仓库,数据仓库,大数据)