【Numpy】numpy的广播机制

广播的引出

numpy两个数组的相加、相减以及相乘都是对应元素之间的操作。

 import numpy as np
 
 x = np.array([[2,2,3],[1,2,3]])
 y = np.array([[1,1,3],[2,2,4]])
 print(x*y)  #numpy当中的数组相乘是对应元素的乘积,与线性代数当中的矩阵相乘不一样
 
 输入结果如下:
 '''
 [[ 2  2  9]
  [ 2  4 12]]
 '''

当两个数组的形状并不相同的时候,我们可以通过扩展数组的方法来实现相加、相减、相乘等操作,这种机制叫做广播(broadcasting)。

比如,一个二维数组减去列平均值,来对数组的每一列进行距平化处理:

 import numpy as np
 arr = np.random.randn(4,3)  #shape(4,3)
 arr_mean = arr.mean(0)      #shape(3,)
 demeaned = arr -arr_mean

很明显上式arr和arr_mean维度并不形同,但是它们可以进行相减操作,这就是通过广播机制来实现的。

广播的原则

广播的原则:如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失和(或)长度为1的维度上进行。

这句话乃是理解广播的核心。广播主要发生在两种情况,一种是两个数组的维数不相等,但是它们的后缘维度的轴长相符,另外一种是有一方的长度为1。

数组维度不同,后缘维度的轴长相符

我们来看一个例子:

  import numpy as np
 
 arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])  #arr1.shape = (4,3)
 arr2 = np.array([1, 2, 3])    #arr2.shape = (3,)
 arr_sum = arr1 + arr2
 print(arr_sum)
 
 输入结果如下:
 '''
 [[1 2 3]
  [2 3 4]
 [3 4 5]
 [4 5 6]]
 '''

上例中arr1的shape为(4,3),arr2的shape为(3,)。可以说前者是二维的,而后者是一维的。但是它们的后缘维度相等,arr1的第二维长度为3,和arr2的维度相同。arr1和arr2的shape并不一样,但是它们可以执行相加操作,这就是通过广播完成的,在这个例子当中是将arr2沿着0轴进行扩展。

上面程序当中的广播如下图所示:

image

同样的例子还有:

image

从上面的图可以看到,(3,4,2)和(4,2)的维度是不相同的,前者为3维,后者为2维。但是它们后缘维度的轴长相同,都为(4,2),所以可以沿着0轴进行广播。

同样,还有一些例子:(4,2,3)和(2,3)是兼容的,(4,2,3)还和(3)是兼容的,后者需要在两个轴上面进行扩展。

数组维度相同,其中有个轴为1

我们来看下面的例子:

  import numpy as np
 
 arr1 = np.array([[0, 0, 0],[1, 1, 1],[2, 2, 2], [3, 3, 3]])  #arr1.shape = (4,3)
 arr2 = np.array([[1],[2],[3],[4]])    #arr2.shape = (4, 1)
 
 arr_sum = arr1 + arr2
 print(arr_sum)
 
 输出结果如下:
 [[1 1 1]
  [3 3 3]
  [5 5 5]
  [7 7 7]]

arr1的shape为(4,3),arr2的shape为(4,1),它们都是二维的,但是第二个数组在1轴上的长度为1,所以,可以在1轴上面进行广播,如下图所示:

image
在这种情况下,两个数组的维度要保证相等,其中有一个轴的长度为1,这样就会沿着长度为1的轴进行扩展。这样的例子还有:(4,6)和(1,6) 。(3,5,6)和(1,5,6)、(3,1,6)、(3,5,1),后面三个分别会沿着0轴,1轴,2轴进行广播。

后话:还有上面两种结合的情况,如(3,5,6)和(1,6)是可以相加的。在TensorFlow当中计算张量的时候也是用广播机制,并且和numpy的广播机制是一样的。

你可能感兴趣的:(【Numpy】numpy的广播机制)