2023年全国职业院校技能大赛
大数据应用开发赛题第01套
PS:需要资源可私信博主!
背景描述
大数据时代背景下,电商经营模式发生很大改变。在传统运营模式中,缺乏数据积累,人们在做出一些决策行为过程中,更多是凭借个人经验和直觉,发展路径比较自我封闭。而大数据时代,为人们提供一种全新的思路,通过大量的数据分析得出的结果将更加现实和准确。商家可以对客户的消费行为信息数据进行收集和整理,比如消费者购买产品的花费、选择产品的渠道、偏好产品的类型、产品回购周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等。通过数据追踪,知道顾客从哪儿来,是看了某网站投放的广告还是通过朋友推荐链接,是新访客还是老用户,喜欢浏览什么产品,购物车有无商品,是否清空,还有每一笔交易记录,精准锁定一定年龄、收入、对产品有兴趣的顾客,对顾客进行分组、标签化,通过不同标签组合运用,获得不同目标群体,以此开展精准推送。
因数据驱动的零售新时代已经到来,没有大数据,我们无法为消费者提供这些体验,为完成电商的大数据分析工作,你所在的小组将应用大数据技术,以Scala作为整个项目的基础开发语言,基于大数据平台综合利用Hive、Spark、Flink、Vue.js等技术,对数据进行处理、分析及可视化呈现,你们作为该小组的技术人员,请按照下面任务完成本次工作。
任务A:大数据平台搭建(容器环境)(15分)
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:宿主机及各容器节点可通过Asbru工具或SSH客户端进行SSH访问。 |
子任务一:Hadoop 完全分布式安装配置
本任务需要使用root用户完成相关配置,安装Hadoop需要配置前置环境。命令中要求使用绝对路径,具体要求如下:
从宿主机/opt目录下将文件hadoop-3.1.3.tar.gz、jdk-8u212-linux-x64.tar.gz复制到容器Master中的/opt/software路径中(若路径不存在,则需新建),将Master节点JDK安装包解压到/opt/module路径中(若路径不存在,则需新建),将JDK解压命令复制并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
修改容器中/etc/profile文件,设置JDK环境变量并使其生效,配置完毕后在Master节点分别执行“java -version”和“javac”命令,将命令行执行结果分别截图并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
请完成host相关配置,将三个节点分别命名为master、slave1、slave2,并做免密登录,用scp命令并使用绝对路径从Master复制JDK解压后的安装文件到slave1、slave2节点(若路径不存在,则需新建),并配置slave1、slave2相关环境变量,将全部scp复制JDK的命令复制并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
在Master将Hadoop解压到/opt/module(若路径不存在,则需新建)目录下,并将解压包分发至slave1、slave2中,其中master、slave1、slave2节点均作为datanode,配置好相关环境,初始化Hadoop环境namenode,将初始化命令及初始化结果截图(截取初始化结果日志最后20行即可)粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
启动Hadoop集群(包括hdfs和yarn),使用jps命令查看Master节点与slave1节点的Java进程,将jps命令与结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下。
子任务二:Spark on Yarn安装配置
本任务需要使用root用户完成相关配置,已安装Hadoop及需要配置前置环境,具体要求如下:
- 从宿主机/opt目录下将文件spark-3.1.1-bin-hadoop3.2.tgz复制到容器Master中的/opt/software(若路径不存在,则需新建)中,将Spark包解压到/opt/module路径中(若路径不存在,则需新建),将完整解压命令复制粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
- 修改容器中/etc/profile文件,设置Spark环境变量并使环境变量生效,在/opt目录下运行命令spark-submit --version,将命令与结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
- 完成on yarn相关配置,使用spark on yarn 的模式提交$SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar 运行的主类为org.apache.spark.examples.SparkPi,将运行结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下(截取Pi结果的前后各5行)。
(运行命令为:spark-submit --master yarn --class org.apache.spark.examples.SparkPi $SPARK_HOME/examples/jars/spark-examples_2.12-3.1.1.jar)
子任务三:HBase分布式安装配置
本任务需要使用root用户完成相关配置,安装HBase需要配置Hadoop和ZooKeeper等前置环境。命令中要求使用绝对路径,具体要求如下:
- 从宿主机/opt目录下将文件apache-zookeeper-3.5.7-bin.tar.gz、hbase-2.2.3-bin.tar.gz复制到容器Master中的/opt/software路径中(若路径不存在,则需新建),将ZooKeeper、HBase安装包解压到/opt/module目录下,将HBase的解压命令复制并粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
- 完成ZooKeeper相关部署,用scp命令并使用绝对路径从容器master复制HBase解压后的包分发至slave1、slave2中,并修改相关配置,配置好环境变量,在容器Master节点中运行命令hbase version,将全部复制命令复制并将hbase version命令的结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;
- 启动HBase后在三个节点分别使用jps命令查看,并将结果分别截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下;正常启动后在hbase shell中查看命名空间,将查看命名空间的结果截图粘贴至客户端桌面【Release\任务A提交结果.docx】中对应的任务序号下。
任务B:离线数据处理(25分)
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:各节点可通过Asbru工具或SSH客户端进行SSH访问; 主节点MySQL数据库用户名/密码:root/123456(已配置远程连接); Hive的配置文件位于/opt/apache-hive-2.3.4-bin/conf/ Spark任务在Yarn上用Client运行,方便观察日志。 |
子任务一:数据抽取
编写Scala代码,使用Spark将MySQL的shtd_store库中表user_info、sku_info、base_province、base_region、order_info、order_detail的数据增量抽取到Hive的ods库中对应表user_info、sku_info、base_province、base_region、order_info、order_detail中。(若ods库中部分表没有数据,正常抽取即可)
- 抽取shtd_store库中user_info的增量数据进入Hive的ods库中表user_info。根据ods.user_info表中operate_time或create_time作为增量字段(即MySQL中每条数据取这两个时间中较大的那个时间作为增量字段去和ods里的这两个字段中较大的时间进行比较),只将新增的数据抽入,字段名称、类型不变,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.user_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取shtd_store库中sku_info的增量数据进入Hive的ods库中表sku_info。根据ods.sku_info表中create_time作为增量字段,只将新增的数据抽入,字段名称、类型不变,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.sku_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取shtd_store库中base_province的增量数据进入Hive的ods库中表base_province。根据ods.base_province表中id作为增量字段,只将新增的数据抽入,字段名称、类型不变并添加字段create_time取当前时间,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.base_province命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取shtd_store库中base_region的增量数据进入Hive的ods库中表base_region。根据ods.base_region表中id作为增量字段,只将新增的数据抽入,字段名称、类型不变并添加字段create_time取当前时间,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.base_region命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取shtd_store库中order_info的增量数据进入Hive的ods库中表order_info,根据ods.order_info表中operate_time或create_time作为增量字段(即MySQL中每条数据取这两个时间中较大的那个时间作为增量字段去和ods里的这两个字段中较大的时间进行比较),只将新增的数据抽入,字段名称、类型不变,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.order_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取shtd_store库中order_detail的增量数据进入Hive的ods库中表order_detail,根据ods.order_detail表中create_time作为增量字段,只将新增的数据抽入,字段名称、类型不变,同时添加静态分区,分区字段为etl_date,类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。使用hive cli执行show partitions ods.order_detail命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下。
子任务二:数据清洗
编写Scala代码,使用Spark将ods库中相应表数据全量抽取到Hive的dwd库中对应表中。表中有涉及到timestamp类型的,均要求按照yyyy-MM-dd HH:mm:ss,不记录毫秒数,若原数据中只有年月日,则在时分秒的位置添加00:00:00,添加之后使其符合yyyy-MM-dd HH:mm:ss。(若dwd库中部分表没有数据,正常抽取即可)
- 抽取ods库中user_info表中昨天的分区(子任务一生成的分区)数据,并结合dim_user_info最新分区现有的数据,根据id合并数据到dwd库中dim_user_info的分区表(合并是指对dwd层数据进行插入或修改,需修改的数据以id为合并字段,根据operate_time排序取最新的一条),分区字段为etl_date且值与ods库的相对应表该值相等,同时若operate_time为空,则用create_time填充,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”。若该条记录第一次进入数仓dwd层则dwd_insert_time、dwd_modify_time均存当前操作时间,并进行数据类型转换。若该数据在进入dwd层时发生了合并修改,则dwd_insert_time时间不变,dwd_modify_time存当前操作时间,其余列存最新的值。使用hive cli执行show partitions dwd.dim_user_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取ods库sku_info表中昨天的分区(子任务一生成的分区)数据,并结合dim_sku_info最新分区现有的数据,根据id合并数据到dwd库中dim_sku_info的分区表(合并是指对dwd层数据进行插入或修改,需修改的数据以id为合并字段,根据create_time排序取最新的一条),分区字段为etl_date且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”。若该条数据第一次进入数仓dwd层则dwd_insert_time、dwd_modify_time均填写当前操作时间,并进行数据类型转换。若该数据在进入dwd层时发生了合并修改,则dwd_insert_time时间不变,dwd_modify_time存当前操作时间,其余列存最新的值。使用hive cli查询表dim_sku_info的字段id、sku_desc、dwd_insert_user、dwd_modify_time、etl_date,条件为最新分区的数据,id大于等于15且小于等于20,并且按照id升序排序,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取ods库base_province表中昨天的分区(子任务一生成的分区)数据,并结合dim_province最新分区现有的数据,根据id合并数据到dwd库中dim_province的分区表(合并是指对dwd层数据进行插入或修改,需修改的数据以id为合并字段,根据create_time排序取最新的一条),分区字段为etl_date且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”。若该条数据第一次进入数仓dwd层则dwd_insert_time、dwd_modify_time均填写当前操作时间,并进行数据类型转换。若该数据在进入dwd层时发生了合并修改,则dwd_insert_time时间不变,dwd_modify_time存当前操作时间,其余列存最新的值。使用hive cli在表dwd.dim_province最新分区中,查询该分区中数据的条数,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 抽取ods库base_region表中昨天的分区(子任务一生成的分区)数据,并结合dim_region最新分区现有的数据,根据id合并数据到dwd库中dim_region的分区表(合并是指对dwd层数据进行插入或修改,需修改的数据以id为合并字段,根据create_time排序取最新的一条),分区字段为etl_date且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”。若该条数据第一次进入数仓dwd层则dwd_insert_time、dwd_modify_time均填写当前操作时间,并进行数据类型转换。若该数据在进入dwd层时发生了合并修改,则dwd_insert_time时间不变,dwd_modify_time存当前操作时间,其余列存最新的值。使用hive cli在表dwd.dim_region最新分区中,查询该分区中数据的条数,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 将ods库中order_info表昨天的分区(子任务一生成的分区)数据抽取到dwd库中fact_order_info的动态分区表,分区字段为etl_date,类型为String,取create_time值并将格式转换为yyyyMMdd,同时若operate_time为空,则用create_time填充,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”,dwd_insert_time、dwd_modify_time均填写当前操作时间,并进行数据类型转换。使用hive cli执行show partitions dwd.fact_order_info命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 将ods库中order_detail表昨天的分区(子任务一中生成的分区)数据抽取到dwd库中fact_order_detail的动态分区表,分区字段为etl_date,类型为String,取create_time值并将格式转换为yyyyMMdd,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”,dwd_insert_time、dwd_modify_time均填写当前操作时间,并进行数据类型转换。使用hive cli执行show partitions dwd.fact_order_detail命令,将结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下。
子任务三:指标计算
编写Scala代码,使用Spark计算相关指标。
注:在指标计算中,不考虑订单信息表中order_status字段的值,将所有订单视为有效订单。计算订单金额或订单总金额时只使用final_total_amount字段。需注意dwd所有的维表取最新的分区。
- 本任务基于以下2、3、4小题完成,使用Azkaban完成第2、3、4题任务代码的调度。工作流要求,使用shell输出“开始”作为工作流的第一个job(job1),2、3、4题任务为串行任务且它们依赖job1的完成(命名为job2、job3、job4),job2、job3、job4完成之后使用shell输出“结束”作为工作流的最后一个job(endjob),endjob依赖job2、job3、job4,并将最终任务调度完成后的工作流截图,将截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
- 根据dwd层表统计每个省份、每个地区、每个月下单的数量和下单的总金额,存入MySQL数据库shtd_result的provinceeverymonth表中(表结构如下),然后在Linux的MySQL命令行中根据订单总数、订单总金额、省份表主键均为降序排序,查询出前5条,将SQL语句复制粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下,将执行结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
字段 |
类型 |
中文含义 |
备注 |
provinceid |
int |
省份表主键 |
|
provincename |
text |
省份名称 |
|
regionid |
int |
地区表主键 |
|
regionname |
text |
地区名称 |
|
totalconsumption |
double |
订单总金额 |
当月订单总金额 |
totalorder |
int |
订单总数 |
当月订单总数 |
year |
int |
年 |
订单产生的年 |
month |
int |
月 |
订单产生的月 |
- 请根据dwd层表计算出2020年4月每个省份的平均订单金额和所有省份平均订单金额相比较结果(“高/低/相同”),存入MySQL数据库shtd_result的provinceavgcmp表(表结构如下)中,然后在Linux的MySQL命令行中根据省份表主键、该省平均订单金额均为降序排序,查询出前5条,将SQL语句复制粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下,将执行结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
字段 |
类型 |
中文含义 |
备注 |
provinceid |
int |
省份表主键 |
|
provincename |
text |
省份名称 |
|
provinceavgconsumption |
double |
该省平均订单金额 |
|
allprovinceavgconsumption |
double |
所有省平均订单金额 |
|
comparison |
text |
比较结果 |
该省平均订单金额和所有省平均订单金额比较结果,值为:高/低/相同 |
- 根据dwd层表统计在两天内连续下单并且下单金额保持增长的用户,存入MySQL数据库shtd_result的usercontinueorder表(表结构如下)中,然后在Linux的MySQL命令行中根据订单总数、订单总金额、客户主键均为降序排序,查询出前5条,将SQL语句复制粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下,将执行结果截图粘贴至客户端桌面【Release\任务B提交结果.docx】中对应的任务序号下;
字段 |
类型 |
中文含义 |
备注 |
userid |
int |
客户主键 |
|
username |
text |
客户名称 |
|
day |
text |
日 |
记录下单日的时间,格式为 yyyyMMdd_yyyyMMdd 例如: 20220101_20220102 |
totalconsumption |
double |
订单总金额 |
连续两天的订单总金额 |
totalorder |
int |
订单总数 |
连续两天的订单总数 |
任务C:数据挖掘(10分)
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:各节点可通过Asbru工具或SSH客户端进行SSH访问; 主节点MySQL数据库用户名/密码:root/123456(已配置远程连接); Hive的配置文件位于/opt/apache-hive-2.3.4-bin/conf/ Spark任务在Yarn上用Client运行,方便观察日志。 该任务均使用Scala编写,利用Spark相关库完成。 |
子任务一:特征工程
剔除订单信息表与订单详细信息表中用户id与商品id不存在现有的维表中的记录,同时建议多利用缓存并充分考虑并行度来优化代码,达到更快的计算效果。
- 根据Hive的dwd库中相关表或MySQL中shtd_store中相关表(order_detail、sku_info),计算出与用户id为6708的用户所购买相同商品种类最多的前10位用户(只考虑他俩购买过多少种相同的商品,不考虑相同的商品买了多少次),将10位用户id进行输出,若与多个用户购买的商品种类相同,则输出结果按照用户id升序排序,输出格式如下,将结果截图粘贴至客户端桌面【Release\任务C提交结果.docx】中对应的任务序号下;
结果格式如下:
-------------------相同种类前10的id结果展示为:--------------------
1,2,901,4,5,21,32,91,14,52
- 根据Hive的dwd库中相关表或MySQL中shtd_store中相关商品表(sku_info),获取id、spu_id、price、weight、tm_id、category3_id 这六个字段并进行数据预处理,对price、weight进行规范化(StandardScaler)处理,对spu_id、tm_id、category3_id进行one-hot编码处理(若该商品属于该品牌则置为1,否则置为0),并按照id进行升序排序,在集群中输出第一条数据前10列(无需展示字段名),将结果截图粘贴至客户端桌面【Release\任务C提交结果.docx】中对应的任务序号下。
字段 |
类型 |
中文含义 |
备注 |
id |
double |
主键 |
|
price |
double |
价格 |
|
weight |
double |
重量 |
|
spu_id#1 |
double |
spu_id 1 |
若属于该spu_id,则内容为1否则为0 |
spu_id#2 |
double |
spu_id 2 |
若属于该spu_id,则内容为1否则为0 |
..... |
double |
|
|
tm_id#1 |
double |
品牌1 |
若属于该品牌,则内容为1否则为0 |
tm_id#2 |
double |
品牌2 |
若属于该品牌,则内容为1否则为0 |
…… |
double |
|
|
category3_id#1 |
double |
分类级别3 1 |
若属于该分类级别3,则内容为1否则为0 |
category3_id#2 |
double |
分类级别3 2 |
若属于该分类级别3,则内容为1否则为0 |
…… |
|
|
|
结果格式如下:
--------------------第一条数据前10列结果展示为:---------------------
1.0,0.892346,1.72568,0.0,0.0,0.0,0.0,1.0,0.0,0.0
子任务二:推荐系统
- 根据子任务一的结果,计算出与用户id为6708的用户所购买相同商品种类最多的前10位用户id(只考虑他俩购买过多少种相同的商品,不考虑相同的商品买了多少次),并根据Hive的dwd库中相关表或MySQL数据库shtd_store中相关表,获取到这10位用户已购买过的商品,并剔除用户6708已购买的商品,通过计算这10位用户已购买的商品(剔除用户6708已购买的商品)与用户6708已购买的商品数据集中商品的余弦相似度累加再求均值,输出均值前5商品id作为推荐使用,将执行结果截图粘贴至客户端桌面【Release\任务C提交结果.docx】中对应的任务序号下。
结果格式如下:
------------------------推荐Top5结果如下------------------------
相似度top1(商品id:1,平均相似度:0.983456)
相似度top2(商品id:71,平均相似度:0.782672)
相似度top3(商品id:22,平均相似度:0.7635246)
相似度top4(商品id:351,平均相似度:0.7335748)
相似度top5(商品id:14,平均相似度:0.522356)
任务D:数据采集与实时计算(20分)
环境说明:
服务端登录地址详见各任务服务端说明。 补充说明:各节点可通过Asbru工具或SSH客户端进行SSH访问; Flink任务在Yarn上用per job模式(即Job分离模式,不采用Session模式),方便Yarn回收资源。 |
子任务一:实时数据采集
- 在主节点使用Flume采集实时数据生成器10050端口的socket数据,将数据存入到Kafka的Topic中(Topic名称为order,分区数为4),使用Kafka自带的消费者消费order(Topic)中的数据,将前2条数据的结果截图粘贴至客户端桌面【Release\任务D提交结果.docx】中对应的任务序号下;
- 采用多路复用模式,Flume接收数据注入kafka 的同时,将数据备份到HDFS目录/user/test/flumebackup下,将查看备份目录下的第一个文件的前2条数据的命令与结果截图粘贴至客户端桌面【Release\任务D提交结果.docx】中对应的任务序号下。
子任务二:使用Flink处理Kafka中的数据
编写Scala代码,使用Flink消费Kafka中Topic为order的数据并进行相应的数据统计计算(订单信息对应表结构order_info,订单详细信息对应表结构order_detail(来源类型和来源编号这两个字段不考虑,所以在实时数据中不会出现),同时计算中使用order_info或order_detail表中create_time或operate_time取两者中值较大者作为EventTime,若operate_time为空值或无此列,则使用create_time填充,允许数据延迟5s,订单状态分别为1001:创建订单、1002:支付订单、1003:取消订单、1004:完成订单、1005:申请退回、1006:退回完成。另外对于数据结果展示时,不要采用例如:1.9786518E7的科学计数法)。
- 使用Flink消费Kafka中的数据,统计商城实时订单实收金额(需要考虑订单状态,若有取消订单、申请退回、退回完成则不计入订单实收金额,其他状态的则累加),将key设置成totalprice存入Redis中。使用redis cli以get key方式获取totalprice值,将结果截图粘贴至客户端桌面【Release\任务D提交结果.docx】中对应的任务序号下,需两次截图,第一次截图和第二次截图间隔1分钟以上,第一次截图放前面,第二次截图放后面;
- 在任务1进行的同时,使用侧边流,监控若发现order_status字段为退回完成, 将key设置成totalrefundordercount存入Redis中,value存放用户退款消费额。使用redis cli以get key方式获取totalrefundordercount值,将结果截图粘贴至客户端桌面【Release\任务D提交结果.docx】中对应的任务序号下,需两次截图,第一次截图和第二次截图间隔1分钟以上,第一次截图放前面,第二次截图放后面;
- 在任务1进行的同时,使用侧边流,监控若发现order_status字段为取消订单,将数据存入MySQL数据库shtd_result的order_info表中,然后在Linux的MySQL命令行中根据id降序排序,查询列id、consignee、consignee_tel、final_total_amount、feight_fee,查询出前5条,将SQL语句复制粘贴至客户端桌面【Release\任务D提交结果.docx】中对应的任务序号下,将执行结果截图粘贴至客户端桌面【Release\任务D提交结果.docx】中对应的任务序号下。
任务E:数据可视化(15分)
环境说明:
子任务一:用柱状图展示消费额最高的省份
编写Vue工程代码,根据接口,用柱状图展示2020年消费额最高的5个省份,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
子任务二:用柱状图展示消费额最低的省份
编写Vue工程代码,根据接口,用柱状图展示2020年消费额最低的5个省份,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
子任务三:用折线图展示每年上架商品数量变化
编写Vue工程代码,根据接口,用折线图展示每年上架商品数量的变化情况,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
子任务四:用条形图展示平均消费额最高的省份
编写Vue工程代码,根据接口,用条形图展示2020年平均消费额(四舍五入保留两位小数)最高的5个省份,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
子任务五:用折柱混合图展示省份平均消费额和地区平均消费额
编写Vue工程代码,根据接口,用折柱混合图展示2020年各省份平均消费额(四舍五入保留两位小数)和地区平均消费额(四舍五入保留两位小数)的对比情况,柱状图展示平均消费额最高的5个省份,折线图展示这5个省所在的地区的平均消费额变化,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至客户端桌面【Release\任务E提交结果.docx】中对应的任务序号下。
任务F:综合分析(10分)
子任务一:Flink有哪些重启策略?各个重启策略如何配置?
在任务D中使用到了Flink,Flink在运行job时可能会出现各种问题,从而会导致其失败或者重启,对于类似于网络波动造成的运行失败可以采取相对应重启策略来重试,请问Flink有几种重启策略(中文)?分别怎么配置这些重启策略?将内容编写至客户端桌面【Release\任务F提交结果.docx】中对应的任务序号下。
子任务二:Hadoop有哪些类型的调度器?简要说明其工作方法。
简要描述Hadoop有哪些类型的调度器并简要说明其工作方法,将内容编写至客户端桌面【Release\任务F提交结果.docx】中对应的任务序号下。
子任务三:分析下一年度的建仓目的地。
根据任务E的图表,分析各省份的经济现状,公司决定挑选3个省份进行仓储建设,请问应该在哪些省份建设?将内容编写至客户端桌面【Release\任务F提交结果.docx】中对应的任务序号下。