「数据处理」pandas.concat() 合并数据集

concat()

The concat() function concatenates an arbitrary amount of Series or DataFrame objects along an axis while performing optional set logic (union or intersection) of the indexes on the other axes. Like numpy.concatenate, concat() takes a list or dict of homogeneously-typed objects and concatenates them.

df1 = pd.DataFrame(
    {
        "A": ["A0", "A1", "A2", "A3"],
        "B": ["B0", "B1", "B2", "B3"],
        "C": ["C0", "C1", "C2", "C3"],
        "D": ["D0", "D1", "D2", "D3"],
    },
    index=[0, 1, 2, 3],
)


df2 = pd.DataFrame(
    {
        "A": ["A4", "A5", "A6", "A7"],
        "B": ["B4", "B5", "B6", "B7"],
        "C": ["C4", "C5", "C6", "C7"],
        "D": ["D4", "D5", "D6", "D7"],
    },
    index=[4, 5, 6, 7],
)


df3 = pd.DataFrame(
    {
        "A": ["A8", "A9", "A10", "A11"],
        "B": ["B8", "B9", "B10", "B11"],
        "C": ["C8", "C9", "C10", "C11"],
        "D": ["D8", "D9", "D10", "D11"],
    },
    index=[8, 9, 10, 11],
)


frames = [df1, df2, df3]

result = pd.concat(frames)

result
Out[6]: 
      A    B    C    D
0    A0   B0   C0   D0
1    A1   B1   C1   D1
2    A2   B2   C2   D2
3    A3   B3   C3   D3
4    A4   B4   C4   D4
5    A5   B5   C5   D5
6    A6   B6   C6   D6
7    A7   B7   C7   D7
8    A8   B8   C8   D8
9    A9   B9   C9   D9
10  A10  B10  C10  D10
11  A11  B11  C11  D11

「数据处理」pandas.concat() 合并数据集_第1张图片

Note

concat() makes a full copy of the data, and iteratively reusing concat() can create unnecessary copies. Collect all DataFrame or Series objects in a list before usingconcat().

frames = [process_your_file(f) for f in files]
result = pd.concat(frames)

Note

When concatenating DataFrame with named axes, pandas will attempt to preserve these index/column names whenever possible. In the case where all inputs share a common name, this name will be assigned to the result. When the input names do not all agree, the result will be unnamed. The same is true for MultiIndex, but the logic is applied separately on a level-by-level basis.

Joining logic of the resulting axis

The join keyword specifies how to handle axis values that don’t exist in the first DataFrame.

join='outer' takes the union of all axis values

df4 = pd.DataFrame(
    {
        "B": ["B2", "B3", "B6", "B7"],
        "D": ["D2", "D3", "D6", "D7"],
        "F": ["F2", "F3", "F6", "F7"],
    },
    index=[2, 3, 6, 7],
)


result = pd.concat([df1, df4], axis=1)

result
Out[9]: 
     A    B    C    D    B    D    F
0   A0   B0   C0   D0  NaN  NaN  NaN
1   A1   B1   C1   D1  NaN  NaN  NaN
2   A2   B2   C2   D2   B2   D2   F2
3   A3   B3   C3   D3   B3   D3   F3
6  NaN  NaN  NaN  NaN   B6   D6   F6
7  NaN  NaN  NaN  NaN   B7   D7   F7

「数据处理」pandas.concat() 合并数据集_第2张图片

join='inner' takes the intersection of the axis values

result = pd.concat([df1, df4], axis=1, join="inner")

result
Out[11]: 
    A   B   C   D   B   D   F
2  A2  B2  C2  D2  B2  D2  F2
3  A3  B3  C3  D3  B3  D3  F3

「数据处理」pandas.concat() 合并数据集_第3张图片

To perform an effective “left” join using the exact index from the original DataFrame, result can be reindexed.

result = pd.concat([df1, df4], axis=1).reindex(df1.index)

result
Out[13]: 
    A   B   C   D    B    D    F
0  A0  B0  C0  D0  NaN  NaN  NaN
1  A1  B1  C1  D1  NaN  NaN  NaN
2  A2  B2  C2  D2   B2   D2   F2
3  A3  B3  C3  D3   B3   D3   F3

「数据处理」pandas.concat() 合并数据集_第4张图片

Ignoring indexes on the concatenation axis

For DataFrame objects which don’t have a meaningful index, the ignore_index ignores overlapping indexes.

result = pd.concat([df1, df4], ignore_index=True, sort=False)

result
Out[15]: 
     A   B    C   D    F
0   A0  B0   C0  D0  NaN
1   A1  B1   C1  D1  NaN
2   A2  B2   C2  D2  NaN
3   A3  B3   C3  D3  NaN
4  NaN  B2  NaN  D2   F2
5  NaN  B3  NaN  D3   F3
6  NaN  B6  NaN  D6   F6
7  NaN  B7  NaN  D7   F7

「数据处理」pandas.concat() 合并数据集_第5张图片

Concatenating Series and DataFrame together

You can concatenate a mix of Series and DataFrame objects. The Series will be transformed to DataFrame with the column name as the name of the Series.

s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X")

result = pd.concat([df1, s1], axis=1)

result
Out[18]: 
    A   B   C   D   X
0  A0  B0  C0  D0  X0
1  A1  B1  C1  D1  X1
2  A2  B2  C2  D2  X2
3  A3  B3  C3  D3  X3

「数据处理」pandas.concat() 合并数据集_第6张图片

Unnamed Series will be numbered consecutively.

s2 = pd.Series(["_0", "_1", "_2", "_3"])

result = pd.concat([df1, s2, s2, s2], axis=1)

result
Out[21]: 
    A   B   C   D   0   1   2
0  A0  B0  C0  D0  _0  _0  _0
1  A1  B1  C1  D1  _1  _1  _1
2  A2  B2  C2  D2  _2  _2  _2
3  A3  B3  C3  D3  _3  _3  _3

「数据处理」pandas.concat() 合并数据集_第7张图片

ignore_index=True will drop all name references.

result = pd.concat([df1, s1], axis=1, ignore_index=True)

result
Out[23]: 
    0   1   2   3   4
0  A0  B0  C0  D0  X0
1  A1  B1  C1  D1  X1
2  A2  B2  C2  D2  X2
3  A3  B3  C3  D3  X3

「数据处理」pandas.concat() 合并数据集_第8张图片

Resulting keys#

The keys argument adds another axis level to the resulting index or column (creating a MultiIndex) associate specific keys with each original DataFrame.

result = pd.concat(frames, keys=["x", "y", "z"])

result
Out[25]: 
        A    B    C    D
x 0    A0   B0   C0   D0
  1    A1   B1   C1   D1
  2    A2   B2   C2   D2
  3    A3   B3   C3   D3
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11

result.loc["y"]
Out[26]: 
    A   B   C   D
4  A4  B4  C4  D4
5  A5  B5  C5  D5
6  A6  B6  C6  D6
7  A7  B7  C7  D7

「数据处理」pandas.concat() 合并数据集_第9张图片

The keys argument cane override the column names when creating a new DataFrame based on existing Series.

s3 = pd.Series([0, 1, 2, 3], name="foo")

s4 = pd.Series([0, 1, 2, 3])

s5 = pd.Series([0, 1, 4, 5])

pd.concat([s3, s4, s5], axis=1)
Out[30]: 
   foo  0  1
0    0  0  0
1    1  1  1
2    2  2  4
3    3  3  5

pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"])
Out[31]: 
   red  blue  yellow
0    0     0       0
1    1     1       1
2    2     2       4
3    3     3       5

You can also pass a dict to concat() in which case the dict keys will be used for the keysargument unless other keys argument is specified:

pieces = {"x": df1, "y": df2, "z": df3}

result = pd.concat(pieces)

result
Out[34]: 
        A    B    C    D
x 0    A0   B0   C0   D0
  1    A1   B1   C1   D1
  2    A2   B2   C2   D2
  3    A3   B3   C3   D3
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11

「数据处理」pandas.concat() 合并数据集_第10张图片

result = pd.concat(pieces, keys=["z", "y"])

result
Out[36]: 
        A    B    C    D
z 8    A8   B8   C8   D8
  9    A9   B9   C9   D9
  10  A10  B10  C10  D10
  11  A11  B11  C11  D11
y 4    A4   B4   C4   D4
  5    A5   B5   C5   D5
  6    A6   B6   C6   D6
  7    A7   B7   C7   D7

「数据处理」pandas.concat() 合并数据集_第11张图片

The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:

result.index.levels
Out[37]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])

levels argument allows specifying resulting levels associated with the keys

result = pd.concat(
    pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"]
)

result
Out[39]: 
                A    B    C    D
group_key                       
x         0    A0   B0   C0   D0
          1    A1   B1   C1   D1
          2    A2   B2   C2   D2
          3    A3   B3   C3   D3
y         4    A4   B4   C4   D4
          5    A5   B5   C5   D5
          6    A6   B6   C6   D6
          7    A7   B7   C7   D7
z         8    A8   B8   C8   D8
          9    A9   B9   C9   D9
          10  A10  B10  C10  D10
          11  A11  B11  C11  D11

「数据处理」pandas.concat() 合并数据集_第12张图片

result.index.levels
Out[40]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])

Appending rows to a DataFrame

If you have a Series that you want to append as a single row to a DataFrame, you can convert the row into a DataFrame and use concat()

s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"])

result = pd.concat([df1, s2.to_frame().T], ignore_index=True)

result
Out[43]: 
    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  X0  X1  X2  X3

「数据处理」pandas.concat() 合并数据集_第13张图片

更多函数见https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

你可能感兴趣的:(函数,pandas)