C++ OpenCV-dnn模块调用模型进行目标检测 (支持CUDA加速)

前言

OpenCV4.4开始支持YOLOv4模型的调用,需要使用Opencv的DNN模块。
编译安装OpenCV和OpenCV-contrib库步骤,点此链接
C++ OpenCV调用YOLO模型的完整代码点此下载

一、模型加载

	constexpr const char *darknet_cfg = "../face/yolov3-tiny.cfg";//网络文件
	constexpr const char *darknet_weights = "../face/yolov3-tiny.weights";//模型文件
	// 加载模型
	cv::dnn::Net net = cv::dnn::readNetFromDarknet(darknet_cfg, darknet_weights);
	//下面两行在使用CUDA检测时使用
	net.setPreferableBackend(dnn::DNN_BACKEND_CUDA);
	net.setPreferableTarget(dnn::DNN_TARGET_CUDA);
	//下面一行在使用CPU检测时使用
	//net.setPreferableTarget(dnn::DNN_TARGET_CPU);

二、获取标签

	constexpr const char *darknet_names = "../face/face.names"; //类别文件
	std::vector<std::string> class_labels ;//类标签
	// 加载标签集
	
	//std::vector classLabels;
	ifstream classNamesFile(darknet_names);
	if (classNamesFile.is_open())
	{
		string className = "";
		while (std::getline(classNamesFile, className))
			class_labels.push_back(className);
	}

三、检测

// 读取待检测图片
	cv::Mat img = cv::imread(image_path);
	cv::Mat blob = cv::dnn::blobFromImage(img, 1.0 / 255.0, { inpWidth, inpHeight }, 0.00392, true);
	net.setInput(blob);
		// 检测
	vector<Mat> detectionMat;
	net.forward(detectionMat, getOutputsNames(net));// 6 845 1 W x H x C
	//移除置信度低的box
	postprocess(img, detectionMat);

四、相关函数

// Get the names of the output layers
vector<String> getOutputsNames(const dnn::Net& net)
{
	static vector<String> names;
	if (names.empty())
	{
		//Get the indices of the output layers, i.e. the layers with unconnected outputs
		vector<int> outLayers = net.getUnconnectedOutLayers();

		//get the names of all the layers in the network
		vector<String> layersNames = net.getLayerNames();

		// Get the names of the output layers in names
		names.resize(outLayers.size());
		for (size_t i = 0; i < outLayers.size(); ++i)
			names[i] = layersNames[outLayers[i] - 1];
	}
	return names;
}
// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
	//Draw a rectangle displaying the bounding box
	rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255));

	//Get the label for the class name and its confidence
	string label = format("%.2f", conf);
	if (!class_labels.empty())
	{
		//assert(classId < (int)classes.size());
		label = class_labels[classId] + ":" + label;
	}

	//Display the label at the top of the bounding box
	int baseLine;
	Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
	top = max(top, labelSize.height);
	putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 255, 255));
}

// Remove the bounding boxes with low confidence using non-maxima suppression
void postprocess(Mat& frame, const vector<Mat>& outs)
{
	vector<int> classIds;
	vector<float> confidences;
	vector<Rect> boxes;

	for (size_t i = 0; i < outs.size(); ++i)
	{
		// Scan through all the bounding boxes output from the network and keep only the
		// ones with high confidence scores. Assign the box's class label as the class
		// with the highest score for the box.
		float* data = (float*)outs[i].data;
		for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
		{
			Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
			Point classIdPoint;
			double confidence;
			// Get the value and location of the maximum score
			minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
			if (confidence > confThreshold)
			{
				int centerX = (int)(data[0] * frame.cols);
				int centerY = (int)(data[1] * frame.rows);
				int width = (int)(data[2] * frame.cols);
				int height = (int)(data[3] * frame.rows);
				int left = centerX - width / 2;
				int top = centerY - height / 2;

				classIds.push_back(classIdPoint.x);
				confidences.push_back((float)confidence);
				boxes.push_back(Rect(left, top, width, height));
			}
		}
	}

	// Perform non maximum suppression to eliminate redundant overlapping boxes with
	// lower confidences
	vector<int> indices;
	dnn::NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
	for (size_t i = 0; i < indices.size(); ++i)
	{
		int idx = indices[i];
		Rect box = boxes[idx];
		drawPred(classIds[idx], confidences[idx], box.x, box.y,
			box.x + box.width, box.y + box.height, frame);
	}
}


总结

C++ OpenCV调用YOLO模型的完整代码, 下载链接:https://download.csdn.net/download/qq_43019451/12915362

你可能感兴趣的:(经验笔记,深度学习,神经网络)