字母异位词 是由重新排列源单词的字母得到的一个新单词,所有源单词中的字母都恰好只用一次。
示例 1:
输入: strs = [“eat”, “tea”, “tan”, “ate”, “nat”, “bat”]
输出: [[“bat”],[“nat”,“tan”],[“ate”,“eat”,“tea”]]
示例 2:
输入: strs = [""]
输出: [[""]]
示例 3:
输入: strs = [“a”]
输出: [[“a”]]
提示:
1 <= strs.length <= 104
0 <= strs[i].length <= 100
strs[i] 仅包含小写字母
两个字符串互为字母异位词,当且仅当两个字符串包含的字母相同。同一组字母异位词中的字符串具备相同点,可以使用相同点作为一组字母异位词的标志,使用哈希表存储每一组字母异位词,哈希表的键为一组字母异位词的标志,哈希表的值为一组字母异位词列表。
遍历每个字符串,对于每个字符串,得到该字符串所在的一组字母异位词的标志,将当前字符串加入该组字母异位词的列表中。遍历全部字符串之后,哈希表中的每个键值对即为一组字母异位词。
以下的两种方法分别使用排序和计数作为哈希表的键。
方法一:排序
由于互为字母异位词的两个字符串包含的字母相同,因此对两个字符串分别进行排序之后得到的字符串一定是相同的,故可以将排序之后的字符串作为哈希表的键。
class Solution {
public:
vector<vector<string>> groupAnagrams(vector<string>& strs) {
unordered_map<string, vector<string>> mp;
for (string& str: strs) {
string key = str;
sort(key.begin(), key.end());
mp[key].emplace_back(str);
}
vector<vector<string>> ans;
for (auto it = mp.begin(); it != mp.end(); ++it) {
ans.emplace_back(it->second);
}
return ans;
}
};
复杂度分析
时间复杂度:O(nklogk),其中 n 是strs 中的字符串的数量,k 是 strs 中的字符串的的最大长度。需要遍历 n 个字符串,对于每个字符串,需要 O(klogk) 的时间进行排序以及 O(1) 的时间更新哈希表,因此总时间复杂度是 O(nklogk)。
空间复杂度:O(nk),其中n 是 strs 中的字符串的数量,k 是 strs 中的字符串的的最大长度。需要用哈希表存储全部字符串。
方法二:计数
由于互为字母异位词的两个字符串包含的字母相同,因此两个字符串中的相同字母出现的次数一定是相同的,故可以将每个字母出现的次数使用字符串表示,作为哈希表的键。
由于字符串只包含小写字母,因此对于每个字符串,可以使用长度为 2626 的数组记录每个字母出现的次数。需要注意的是,在使用数组作为哈希表的键时,不同语言的支持程度不同,因此不同语言的实现方式也不同。
class Solution {
public:
vector<vector<string>> groupAnagrams(vector<string>& strs) {
// 自定义对 array 类型的哈希函数
auto arrayHash = [fn = hash<int>{}] (const array<int, 26>& arr) -> size_t {
return accumulate(arr.begin(), arr.end(), 0u, [&](size_t acc, int num) {
return (acc << 1) ^ fn(num);
});
};
unordered_map<array<int, 26>, vector<string>, decltype(arrayHash)> mp(0, arrayHash);
for (string& str: strs) {
array<int, 26> counts{};
int length = str.length();
for (int i = 0; i < length; ++i) {
counts[str[i] - 'a'] ++;
}
mp[counts].emplace_back(str);
}
vector<vector<string>> ans;
for (auto it = mp.begin(); it != mp.end(); ++it) {
ans.emplace_back(it->second);
}
return ans;
}
};
复杂度分析
时间复杂度:O(n(k+∣Σ∣)),其中 n 是strs 中的字符串的数量,k 是 strs 中的字符串的的最大长度,Σ 是字符集,在本题中字符集为所有小写字母,Σ∣=26。需要遍历 n 个字符串,对于每个字符串,需要 O(k) 的时间计算每个字母出现的次数,O(∣Σ∣) 的时间生成哈希表的键,以及 O(1) 的时间更新哈希表,因此总时间复杂度是 O(n(k+∣Σ∣))。
空间复杂度:O(n(k+∣Σ∣)),其中 n 是strs 中的字符串的数量,k 是 strs 中的字符串的最大长度,Σ 是字符集,在本题中字符集为所有小写字母,∣Σ∣=26。需要用哈希表存储全部字符串,而记录每个字符串中每个字母出现次数的数组需要的空间为O(∣Σ∣),在渐进意义下小于 O(n(k+∣Σ∣)),可以忽略不计。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/group-anagrams/solution/zi-mu-yi-wei-ci-fen-zu-by-leetcode-solut-gyoc/