C++进阶(十二)lambda&&可变参数&&包装器

在这里插入图片描述


北尘_:个人主页

个人专栏:《Linux操作系统》《经典算法试题 》《C++》 《数据结构与算法》

☀️走在路上,不忘来时的初心

文章目录

  • 一、新的类功能
    • 1、默认成员函数
    • 2、类成员变量初始化
    • 3、 强制生成默认函数的关键字default:
    • 4、 禁止生成默认函数的关键字delete:
  • 二、 可变参数模板
    • 1、递归函数方式展开参数包
    • 2、逗号表达式展开参数包
    • 3、STL容器中的empalce
  • 三、 lambda表达式
    • 1、 C++98中的一个例子
    • 2、 lambda表达式
    • 3、 lambda表达式语法
      • 1、 lambda表达式各部分说明
      • 2、 捕获列表说明
  • 四、包装器
    • 1、function包装器
    • 2、包装器的其他一些场景:
    • 3、bind


一、新的类功能

1、默认成员函数

  1. 构造函数
  2. 析构函数
  3. 拷贝构造函数
  4. 赋值运算符重载
  5. const取地址重载
  6. 取地址重载

最后重要的是前4个,后两个用处不大。默认成员函数就是我们不写编译器会生成一个默认的。
C++11 新增了两个:移动构造函数和移动赋值运算符重载。
针对移动构造函数和移动赋值运算符重载有一些需要注意的点如下:

如果你没有自己实现移动构造函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中的任意一个。那么编译器会自动生成一个默认移动构造。
默认生成的移动构造函数,对于内置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动构造,如果实现了就调用移动构造,没有实现就调用拷贝构造。

如果你没有自己实现移动赋值重载函数,且没有实现析构函数 、拷贝构造、拷贝赋值重载中的任意一个,那么编译器会自动生成一个默认移动赋值。
默认生成的移动构造函数,对于内置类型成员会执行逐成员按字节拷贝,自定义类型成员,则需要看这个成员是否实现移动赋值,如果实现了就调用移动赋值,没有实现就调用拷贝赋值。(默认移动赋值跟上面移动构造完全类似)

如果你提供了移动构造或者移动赋值,编译器不会自动提供拷贝构造和拷贝赋值。

2、类成员变量初始化

C++11允许在类定义时给成员变量初始缺省值,默认生成构造函数会使用这些缺省值初始化,这个我们在类和对象默认就讲了,这里就不再细讲了。

3、 强制生成默认函数的关键字default:

C++11可以让你更好的控制要使用的默认函数。假设你要使用某个默认的函数,但是因为一些原因这个函数没有默认生成。比如:我们提供了拷贝构造,就不会生成移动构造了,那么我们可以使用default关键字显示指定移动构造生成。

4、 禁止生成默认函数的关键字delete:

如果能想要限制某些默认函数的生成,在C++98中,是该函数设置成private,并且只声明补丁已,这样只要其他人想要调用就会报错。在C++11中更简单,只需在该函数声明加上=delete即可,该语法指示编译器不生成对应函数的默认版本,称=delete修饰的函数为删除函数。


二、 可变参数模板

C++11的新特性可变参数模板能够让您创建可以接受可变参数的函数模板和类模板,相比C++98/03,类模版和函数模版中只能含固定数量的模版参数,可变模版参数无疑是一个巨大的改进。然而由于可变模版参数比较抽象,使用起来需要一定的技巧,所以这块还是比较晦涩的。现阶段呢,我们掌握一些基础的可变参数模板特性就够我们用了,所以这里我们点到为止,以后大家如果有需要,再可以深入学习。
下面就是一个基本可变参数的函数模板:

// Args是一个模板参数包,args是一个函数形参参数包
// 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。
template <class ...Args>
void ShowList(Args... args)
{}

上面的参数args前面有省略号,所以它就是一个可变模版参数,我们把带省略号的参数称为“参数包”,它里面包含了0到N(N>=0)个模版参数。我们无法直接获取参数包args中的每个参数的,只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模版参数的一个主要特点,也是最大的难点,即如何展开可变模版参数。由于语法不支持使用args[i]这样方式获取可变
参数,所以我们的用一些奇招来一一获取参数包的值。

1、递归函数方式展开参数包

template<class T>
void ShowList(const T& t)
{
	cout << t << endl;
}
template<class T,class ...Args>
void ShowList(T value, Args... args)
{
	cout << value << " ";
	ShowList(args...);
}
int main()
{
	ShowList(1, 2, 3, 4);
	ShowList(1.5, 2.5, 3.5, 4.5);

	return 0;
}

在这里插入图片描述

2、逗号表达式展开参数包

template<class T>
void Print(const T& t)
{
	cout << t << " ";
}
template<class ...Args>
void ShowList(Args... args)
{
	int arr[] = { (Print(args),0)... };
	cout << endl;
}
int main()
{
	ShowList(1,2,3,4);
	return 0;
}

在这里插入图片描述

3、STL容器中的empalce

http://www.cplusplus.com/reference/vector/vector/emplace_back/
http://www.cplusplus.com/reference/list/list/emplace_back/

C++进阶(十二)lambda&&可变参数&&包装器_第1张图片
首先我们看到的emplace系列的接口,支持模板的可变参数,并且万能引用。那么相对insert和emplace系列接口的优势到底在哪里呢?

总结:
对于自定义成员函数深拷贝的话:
insert调用构造+移动构造,emplace调用构造函数,但由于移动构造快效率快,所以大项不差。
对于自定义成员函数浅拷贝的话:
数据越多越emplace优势越明显。


三、 lambda表达式

1、 C++98中的一个例子

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法。

#include 
#include 
int main()
{
int array[] = {4,1,8,5,3,7,0,9,2,6};
// 默认按照小于比较,排出来结果是升序
std::sort(array, array+sizeof(array)/sizeof(array[0]));
// 如果需要降序,需要改变元素的比较规则
std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());
return 0;
}

如果待排序元素为自定义类型,需要用户定义排序时的比较规则:

struct Goods
{
 string _name;  // 名字
 double _price; // 价格
 int _evaluate; // 评价
 Goods(const char* str, double price, int evaluate)
 :_name(str)
 , _price(price)
 , _evaluate(evaluate)
 {}
};
struct ComparePriceLess
{
 bool operator()(const Goods& gl, const Goods& gr)
 {
 return gl._price < gr._price;
 }
};
struct ComparePriceGreater
{
 bool operator()(const Goods& gl, const Goods& gr)
 {
 return gl._price > gr._price;
 }
};
int main()
{
 vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2, 
3 }, { "菠萝", 1.5, 4 } };
 sort(v.begin(), v.end(), ComparePriceLess());
sort(v.begin(), v.end(), ComparePriceGreater());
}

随着C++语法的发展,人们开始觉得上面的写法太复杂了,每次为了实现一algorithm算法,都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式。

2、 lambda表达式

struct Goods
{
	string _name;
	double _price; 
	int _evaluate; 
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
   3 }, { "菠萝", 1.5, 4 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price < g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });
	return 0;
}

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函数。

3、 lambda表达式语法

1、 lambda表达式各部分说明

lambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement }

[capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来
判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda
函数使用。

(parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略。

mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量
性。使用该修饰符时,参数列表不可省略(即使参数为空)。

->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回
值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推
导。

{statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获
到的变量。

注意:
在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。

int main()
{
    // 最简单的lambda表达式, 该lambda表达式没有任何意义
   []{}; 
    
    // 省略参数列表和返回值类型,返回值类型由编译器推导为int
    int a = 3, b = 4;
   [=]{return a + 3; }; 
    
    // 省略了返回值类型,无返回值类型
    auto fun1 = [&](int c){b = a + c; }; 
    fun1(10)
    cout<<a<<" "<<b<<endl;
    
    // 各部分都很完善的lambda函数
    auto fun2 = [=, &b](int c)->int{return b += a+ c; }; 
    cout<<fun2(10)<<endl;
    
    // 复制捕捉x
    int x = 10;
    auto add_x = [x](int a) mutable { x *= 2; return a + x; }; 
    cout << add_x(10) << endl; 
    return 0;
}

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。

2、 捕获列表说明

捕捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。
[var]:表示值传递方式捕捉变量var
[=]:表示值传递方式捕获所有父作用域中的变量(包括this)
[&var]:表示引用传递捕捉变量var
[&]:表示引用传递捕捉所有父作用域中的变量(包括this)
[this]:表示值传递方式捕捉当前的this指针
注意:
a. 父作用域指包含lambda函数的语句块

b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。
比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量
[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量

c. 捕捉列表不允许变量重复传递,否则就会导致编译错误
比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复

d. 在块作用域以外的lambda函数捕捉列表必须为空

e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都 会导致编译报错。

f. lambda表达式之间不能相互赋值,即使看起来类型相同。

四、包装器

1、function包装器

function包装器 也叫作适配器。C++中的function本质是一个类模板,也是一个包装器。
那么我们来看看,我们为什么需要function呢?

ret = func(x);
// 上面func可能是什么呢?那么func可能是函数名?函数指针?函数对象(仿函数对象)?也有可能
是lamber表达式对象?所以这些都是可调用的类型!如此丰富的类型,可能会导致模板的效率低下!
为什么呢?我们继续往下看
template<class F, class T>
T useF(F f, T x)
{
 static int count = 0;
 cout << "count:" << ++count << endl;
 cout << "count:" << &count << endl;
 return f(x);
}
double f(double i)
{
 return i / 2;
}
struct Functor
{
 double operator()(double d)
 {
 return d / 3;
 }
};
int main()
{
// 函数名
 cout << useF(f, 11.11) << endl;
 // 函数对象
 cout << useF(Functor(), 11.11) << endl;
 // lamber表达式
 cout << useF([](double d)->double{ return d/4; }, 11.11) << endl;
 return 0;
}

通过上面的程序验证,我们会发现useF函数模板实例化了三份。
包装器可以很好的解决上面的问题

C++进阶(十二)lambda&&可变参数&&包装器_第2张图片

int f(int a, int b)
{
	return a + b;
}
struct Functor
{
public:
	int operator() (int a, int b)
	{
		return a + b;
	}
};
class Plus
{
public:
	static int plusi(int a, int b)
	{
		return a + b;
	}
	double plusd(double a, double b)
	{
		return a + b;
	}
};

int main()
{
	// 函数名(函数指针)
	function<int(int, int)> func1 = f;
	cout << func1(1, 2) << endl;
	
	// 函数对象
	function<int(int, int)> func2 = Functor();
	cout << func2(1, 2) << endl;

	// lamber表达式
	function<int(int, int)> func3 = &Plus::plusi;
	cout << func3(1, 2) << endl;

	// 类的成员函数
	function<double(Plus, double, double)> func4 = &Plus::plusd;
	cout << func4(Plus(),1.1,2.2) << endl;

	function<double(Plus* ,double, double)> func5 = &Plus::plusd;
	Plus ps;
	cout << func5(&ps, 1.1, 2.2) << endl;


	return 0;
}

2、包装器的其他一些场景:

https://leetcode-cn.com/problems/evaluate-reverse-polish-notation/submissions/

https://leetcode.cn/problems/evaluate-reverse-polish-notation/
class Solution {
public:
int evalRPN(vector<string>& tokens) {
  stack<int> st;
     map<string, function<int(int, int)>> opFuncMap =
 	{
 			{ "+", [](int i, int j){return i + j; } },
 			{ "-", [](int i, int j){return i - j; } },
		 	{ "*", [](int i, int j){return i * j; } },
 			{ "/", [](int i, int j){return i / j; } }
	 };
  for(auto& str : tokens)
 {
         if(opFuncMap.find(str) != opFuncMap.end())
         {
             int right = st.top();
             st.pop();
             int left = st.top();
             st.pop();
             st.push(opFuncMap[str](left, right));
     }
         else
         {
             // 1、atoi itoa
             // 2、sprintf scanf
             // 3、stoi to_string C++11
             st.push(stoi(str));
         }
     }
     return st.top();
}
};

3、bind

std::bind函数定义在头文件中,是一个函数模板,它就像一个函数包装器(适配器),接受一个可调用对象(callable object),生成一个新的可调用对象来“适应”原对象的参数列表。一般而言,我们用它可以把一个原本接收N个参数的函数fn,通过绑定一些参数,返回一个接收M个(M可以大于N,但这么做没什么意义)参数的新函数。同时,使用std::bind函数还可以实现参数顺序调整等操作。

// 原型如下:
template <class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);
// with return type (2) 
template <class Ret, class Fn, class... Args>
/* unspecified */ bind (Fn&& fn, Args&&... args);

可以将bind函数看作是一个通用的函数适配器,它接受一个可调用对象,生成一个新的可调用对象来“适应”原对象的参数列表。
调用bind的一般形式:auto newCallable = bind(callable,arg_list);
其中,newCallable本身是一个可调用对象,arg_list是一个逗号分隔的参数列表,对应给定的callable的参数。当我们调用newCallable时,newCallable会调用callable,并传给它arg_list中的参数。
arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置:_1为newCallable的第一个参数,_2为第二个参数,以此类推。

// 使用举例
#include 
int Plus(int a, int b)
{
 return a + b;
}
class Sub
{
public:
 int sub(int a, int b)
 {
 return a - b;
 }
};
int main()
{
 //表示绑定函数plus 参数分别由调用 func1 的第一,二个参数指定
 std::function<int(int, int)> func1 = std::bind(Plus, placeholders::_1, 
placeholders::_2);
 //auto func1 = std::bind(Plus, placeholders::_1, placeholders::_2);
 //func2的类型为 function 与func1类型一样
 //表示绑定函数 plus 的第一,二为: 1, 2
 auto  func2 = std::bind(Plus, 1, 2);   
 cout << func1(1, 2) << endl;
 cout << func2() << endl;
 Sub s;
 // 绑定成员函数
 std::function<int(int, int)> func3 = std::bind(&Sub::sub, s, 
placeholders::_1, placeholders::_2);
 // 参数调换顺序
 std::function<int(int, int)> func4 = std::bind(&Sub::sub, s, 
placeholders::_2, placeholders::_1);
 cout << func3(1, 2) << endl; 
 cout << func4(1, 2) << endl;
 return 0;
}

你可能感兴趣的:(C++,c++,java,开发语言)