- .NET 一款基于BGInfo的红队内网渗透工具
dot.Net安全矩阵
网络.net安全.netcoreweb安全矩阵
01阅读须知此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失,均由使用者本人负责。本文所提供的工具仅用于学习,禁止用于其他方面02基本介绍在内网渗透过程中,白名单绕过是红队常见的技术需求。Sharp4Bginfo.exe是一款基于微软签名工具
- 2025年网站源站IP莫名暴露全因排查指南:从协议漏洞到供应链污染
引言:IP暴露已成黑客“破门锤”2025年,全球因源站IP暴露导致的DDoS攻击同比激增217%,某电商平台因IP泄露遭遇800Gbps流量轰炸,业务瘫痪12小时损失超5000万元。更严峻的是,60%的IP暴露并非配置失误,而是新型攻击手法与供应链漏洞的叠加结果——本文将揭示IP暴露的隐秘链条,并提供可落地的闭环解决方案。一、2025年IP暴露的四大技术根源1.协议层漏洞:内存数据被“抽丝剥茧”C
- 【赵渝强老师】达梦数据库的闪回技术
达梦数据库提供的闪回技术主要是在数据库发生逻辑错误的时候,能提供快速且最小损失的恢复。闪回技术旨在快速恢复数据库的逻辑错误。对于物理介质的损坏或者物理文件丢失,就不能使用闪回进行恢复。闪回特性可应用在以下方面:自我维护过程中的修复:当一些重要的记录被意外删除,用户可以向后移动到一个时间点,查看丢失的行并把它们重新插入现在的表内恢复。用于分析数据变化:可以对同一张表的不同闪回时刻进行链接查询,以此查
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- ARM 和 x86_64是什么关系
riverz1227
linux
什么是ARM和x86_64?它们都是CPU指令集架构(ISA)指令集架构(InstructionSetArchitecture)就是:CPU能够理解和执行的“语言”和“命令格式”。类比解释:指令集就像“语言”类比对象ARMCPUx86_64CPU(Intel/AMD)语言西班牙语英语编译器翻译成西班牙语的代码翻译成英语的代码执行者会西班牙语的CPU会英语的CPUARM架构是一种低功耗、高能效的CP
- 多核MCU可用于简化嵌入式设计
转自:http://www.elecfans.com/d/851199.html嵌入式系统设计人员面临着对更高性能和更快上市时间的不断增长的需求。嵌入式处理器需要经常实时地执行不断扩展的任务。同时,应用需要高吞吐量和高能效以及小外形和低成本。多核微控制器单元(MCU)提供了一种可行的新解决方案,利用模块化设计以经济的价格提供多倍的性能提升。几十年来,随着IC上晶体管数量的增加,芯片性能不断提高。采
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 实践YashanDB数据库安全控制的有效方法
数据库
随着数字化转型的推进,数据库的安全性成为企业面临的重要挑战之一。在现代应用中,数据泄露、篡改和非法访问等问题频频发生,给组织带来了巨大的经济损失和品牌形象损害。如何加强数据库安全控制,确保数据的保密性、完整性和可用性,是每个技术团队必须解决的问题。本文将详细探讨在YashanDB中实施有效的安全控制措施的方法,旨在为数据库管理员和技术架构师提供实用的指导和建议,以提升他们在数据库安全方面的认知与实
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 简说scp命令
伊成
其它服务器linux运维
简单介绍scp的全称是:SecureCopyProtocol(安全复制协议),是Linux中用于在网络中安全传输文件的命令行工具。它基于SSH协议,用于在本地服务器和远程服务器之间,或者两台远程服务器之间复制文件或目录。scp基本语法格式如下:scp[选项]源路径目标路径常用选项说明:-r:递归复制整个目录。-P:指定非默认的SSH端口号,默认为22。这里注意为大写的P。-C:启用压缩,提高传输效
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- 从AI辅助编码到自动部署:前端开发提效全流程实践
程序猿全栈の董(董翔)
人工智能热门技术领域人工智能新兴领域热门技术
从AI辅助编码到自动部署:前端开发提效全流程实践**摘要本文结合ChatGPT、GitHubCopilot等AI工具,分享从需求分析、代码编写到自动化部署的全流程提效技巧。通过真实案例演示如何利用AI工具提升30%以上的开发效率,适合有一定前端基础的开发者阅读。一、引言:AI时代的前端开发变革现状:据StackOverflow2023调查,65%的开发者使用AI辅助工具,平均减少35%的调试时间。
- Python结合TensorFlow实现图像风格迁移
Python编程之道
Python人工智能与大数据Python编程之道pythontensorflow开发语言ai
Python结合TensorFlow实现图像风格迁移关键词:Python、TensorFlow、图像风格迁移、神经网络、内容损失、风格损失摘要:本文将带领大家探索如何使用Python结合TensorFlow来实现图像风格迁移。图像风格迁移是一项神奇的技术,它能将一幅图像的风格应用到另一幅图像上。我们会从基础概念讲起,解释图像风格迁移背后的原理,通过Python代码详细展示实现过程,还会探讨实际应用
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- KTO(Kahneman-Tversky Optimization)技术详解与工程实现
DK_Allen
大模型深度学习pytorch人工智能KTO
KTO(Kahneman-TverskyOptimization)技术详解与工程实现一、KTO核心思想KTO是基于行为经济学前景理论(ProspectTheory)的偏好优化方法,突破传统偏好学习需要成对数据的限制,仅需单样本绝对标注(好/坏)即可优化模型。其创新性在于:损失函数设计:将人类对"收益"和"损失"的非对称心理反应量化数据效率:无需构建偏好对(y_w>y_l),直接利用松散标注二、KT
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- 毫秒级断电+AI预警:广州曼顿智能空开如何重新定义电气安全?
mdkk678
人工智能安全
在智慧城市、工业4.0与“双碳”目标的推动下,电力系统正经历从传统被动响应向主动智能防控的深刻变革。广州曼顿科技推出的智能空气开关,凭借毫秒级断电技术与AI预警系统的深度融合,不仅填补了传统断路器在响应速度、故障预判和能效管理上的技术空白,更以“零时差守护”理念重塑了电气安全的新范式。一、技术突破:毫秒级断电的“物理屏障”传统断路器依赖机械结构实现过载保护,其响应时间通常在数十毫秒以上,难以应对瞬
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- 百万并发稳如磐石:Redis穿透/雪崩避坑实战与架构精要
今天你慧了码码码码码码码码码码
Redisredis架构数据库
某社交平台在明星官宣离婚时突发崩溃:每秒50万查询涌向数据库,导致核心服务不可用30分钟。事后分析发现,恶意用户伪造海量不存在的用户ID发起请求,同时大量热点Key集中失效,引发缓存穿透与雪崩的双重风暴。这个千万级损失的案例,揭示了缓存异常处理的生死攸关。一、缓存穿透:恶意请求的隐形杀手1.穿透原理与危害分析恶意用户缓存数据库循环其他恶意用户系统告警查询不存在的数据(user_9999999)缓存
- 为什么MySQL怕排序,Redis ZSet却秒杀?跳表+亿级数据的架构暴力美学
某证券交易所实时股价排序系统突发故障:处理10万支股票的排序请求从毫秒级飙升到12秒。事后发现ZSet元素数量突破阈值后,底层结构未能从listpack切换到跳表,导致性能断崖式下跌。这个千万级损失的案例揭示了ZSet底层实现的关键性。一、ZSet双引擎架构:自适应存储的艺术1.小数据高效存储:listpack(Redis7.0+)//listpack内存结构示例[总字节数][元素数量][元素1]
- 深度学习核心知识简介和模型调参
研术工坊
深度学习知识和技巧深度学习人工智能python
深度学习模型调优就像调制一道复杂的菜肴,需要掌握多种"调料"的用法。本文将为您详解这些关键"调料",帮助您烹饪出高性能的模型。###核心参数及其影响####1️⃣Loss(损失函数)**基本介绍**:衡量模型预测与真实值差距的指标,是模型优化的指南针。**生活类比**:想象你在教小孩认识动物:-**完美情况**:小孩看到猫说"猫",看到狗说"狗"→Loss=0-**有错误**:小孩看到猫说"狗"→
- 从单体到微服务:Spring Cloud 开篇与微服务设计
chanalbert
SpringCloud微服务springcloud架构
一、单体架构的核心痛点与微服务化目标1.单体架构的致命缺陷问题表现后果可维护性差百万行代码耦合,修改一处需全量测试迭代周期长,创新停滞扩展性受限无法按模块独立扩缩容(如订单模块需扩容时,用户模块被迫一起扩容)资源浪费30%+技术固化全系统必须使用同一技术栈(如数据库选型)新技术无法局部试点部署风险高全量部署导致停机时间长,回滚困难业务中断损失每分钟数万美元2.微服务化的设计目标自治性:每个服务独立
- 金融行业的等保测评要求
亿林等保
金融网络web安全网络安全
在金融行业中,网络安全问题非常普遍,如恶意攻击、病毒感染、数据泄露等。这些问题可能会导致金融机构的信息系统瘫痪,造成巨大的经济损失,甚至影响国家金融稳定。因此,金融机构应该高度重视网络安全问题,采取有效的安全措施,保障信息系统的安全和稳定。等保测评是保障金融行业网络安全的重要措施之一。金融机构应该定期进行等保测评,及时发现和解决信息系统存在的安全问题和漏洞,确保信息系统的安全和可靠。本文重点阐述金
- Java 的几种混淆技术对比
java混淆代码
引言在Java应用开发中,代码保护是一个重要环节。本文将系统性地介绍主流Java混淆技术,分析其原理、优缺点,并推荐相关工具,帮助开发者选择适合的保护方案。名称混淆原理名称混淆,就是将Javaclass中的Class/Method/Field等名称替换为无意义字符,增加逆向分析难度。优点没有性能损失无法被还原缺点无法保护代码逻辑和字符串名称改变后影响日志分析可能影响反射调用,配置繁琐工具推荐Pro
- 基于存算一体架构的实时深度学习推理优化
瑕疵
热点资讯架构深度学习人工智能
博客主页:瑕疵的CSDN主页Gitee主页:瑕疵的gitee主页⏩文章专栏:《热点资讯》基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化基于存算一体架构的实时深度学习推理优化引言存算一体架构的核心优势1.能效比突破2.实时性保障架构设计与实现技术1.存储单元创新2.硬件加速器设计3.电路级优化深度学习推理优化策略1.模型压缩技术2.硬件-软件协同优化3.运行时调度典型应
- Java构建区块链版权交易平台:从智能合约到法律合规的全栈实战
墨夶
Java学习资料1java区块链智能合约
——基于HyperledgerFabric与SpringBoot的版权交易系统设计数字版权时代的“信任危机”与技术破局在数字内容爆炸式增长的今天,版权侵权问题日益严峻。据统计,全球每年因版权纠纷造成的经济损失高达数百亿美元。Java技术栈凭借其企业级开发能力、区块链集成优势及完善的生态工具链,成为构建版权交易平台的核心选择。本文将从区块链存证、智能合约交易、法律合规模块三大维度,通过代码级深度解析
- 【AI大模型】神经网络反向传播:核心原理与完整实现
我爱一条柴ya
学习AI记录人工智能神经网络深度学习aiAI编程
一、反向传播的本质与意义反向传播(Backpropagation)是神经网络训练的核心算法,通过链式法则高效计算损失函数对网络参数的梯度,实现神经网络的优化学习。它的出现解决了神经网络训练中的关键瓶颈,使深度学习成为可能。为什么需要反向传播?参数规模爆炸:现代神经网络有数百万至数十亿参数手动计算不可行:复杂网络梯度计算量指数级增长高效优化需求:梯度下降算法需要精确的梯度计算二、前向传播与反向传播对
- 企业物资集采平台解决方案之:AI+物联网,智能预测需求,让企业库存“零呆滞”的科技实践
万米商云
人工智能物联网科技集采商城企业采购供应链采购
在制造业、能源、基建、连锁零售等行业,物资采购与库存管理长期是成本黑洞与效率瓶颈。传统模式依赖经验判断与静态计划,常面临两大困境:“备而不用”:过量采购导致库存积压,占用巨额资金,备件老化报废损失触目惊心;“用而无备”:突发需求或预测偏差造成缺货,产线停摆、项目延误,损失难以估量。德勤报告指出,全球企业每年因库存管理不善造成的损失高达万亿美元级别。如何突破这一困局?AI与物联网的深度融合,正为企业
- FDMA读写AXI BRAM交互:FPGA高速数据传输的核心技术
芯作者
D1:ZYNQ设计fpga开发
在图像处理系统中,当1080P视频流以每秒60帧的速度传输时,传统DMA每帧会浪费27%的带宽在地址管理上——而FDMA技术能将这些损失降至3%以内现代FPGA系统中,高效数据搬运往往是性能瓶颈的关键所在。当你在手机上流畅播放4K视频、在自动驾驶系统中实时处理激光雷达点云时,背后都依赖于FDMA(FlexibleDirectMemoryAccess)与AXIBRAM的高效交互技术。本文将深入探讨这
- 【PyTorch】PyTorch中torch.nn模块的卷积层
PyTorch深度学习总结第七章PyTorch中torch.nn模块的卷积层文章目录PyTorch深度学习总结前言一、torch.nn模块1.模块的基本组成部分1.1层(Layers)1.2损失函数(LossFunctions)1.3激活函数(ActivationFunctions)2.自定义神经网络模型3.模块的优势二、torch.nn模块的卷积层1.卷积的定义2.常见的卷积层3.卷积层的重要参
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo