适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口
虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque
deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和 删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落 在了deque的迭代器身上
与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的
与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段
但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作 为stack和queue的底层数据结构
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有 push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对 stack 和 queue默认选择deque作为其底层容器,主要是因为:
结合了deque的优点,而完美的避开了其缺陷
4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque
函数说明 | 接口说明 |
stack() | 构造空的栈 |
empty() | 检测stack是否为空 |
size() | 返回stack中元素的个数 |
top() | 返回栈顶元素的引用 |
push() | 将元素val压入stack中 |
pop() | 将stack中尾部的元素弹出 |
4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque
函数声明 | 接口说明 |
queue() | 构造空的队列 |
empty() | 检测队列是否为空,是返回true,否则返回false |
size() | 返回队列中有效元素的个数 |
front() | 返回队头元素的引用 |
back() | 返回队尾元素的引用 |
push() | 在队尾将元素val入队列 |
pop() | 将队头元素出队列 |
5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector
6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数 make_heap、push_heap和pop_heap来自动完成此操作
优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue;注意: 默认情况下priority_queue是大堆
函数声明 | 接口说明 |
priority_queue() / priority_queue(first, last) | 构造一个空的优先级队列 |
empty( ) | 检测优先级队列是否为空,是返回true,否则返回 false |
top( ) | 返回优先级队列中最大(最小元素),即堆顶元素 |
push(x) | 在优先级队列中插入元素x |
pop() | 删除优先级队列中最大(最小)元素,即堆顶元素 |
【注意】
#include
#include
#include // greater算法的头文件
void TestPriorityQueue()
{
// 默认情况下,创建的是大堆,其底层按照小于号比较
vector v{3,2,7,6,0,4,1,9,8,5};
priority_queue q1;
for (auto& e : v)
q1.push(e);
cout << q1.top() << endl;
// 如果要创建小堆,将第三个模板参数换成greater比较方式
priority_queue, greater> q2(v.begin(), v.end());
cout << q2.top() << endl;
}
2. 如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
bool operator<(const Date& d)const
{
return (_year < d._year) ||
(_year == d._year && _month < d._month) ||
(_year == d._year && _month == d._month && _day < d._day);
}
bool operator>(const Date& d)const
{
return (_year > d._year) ||
(_year == d._year && _month > d._month) ||
(_year == d._year && _month == d._month && _day > d._day);
}
friend ostream& operator<<(ostream& _cout, const Date& d)
{
_cout << d._year << "-" << d._month << "-" << d._day;
return _cout;
}
private:
int _year;
int _month;
int _day;
};
void TestPriorityQueue()
{
// 大堆,需要用户在自定义类型中提供<的重载
priority_queue q1;
q1.push(Date(2018, 10, 29));
q1.push(Date(2018, 10, 28));
q1.push(Date(2018, 10, 30));
cout << q1.top() << endl;
// 如果要创建小堆,需要用户提供>的重载
priority_queue, greater> q2;
q2.push(Date(2018, 10, 29));
q2.push(Date(2018, 10, 28));
q2.push(Date(2018, 10, 30));
cout << q2.top() << endl;
}