介质访问控制(MAC)是所有“共享介质"类型的局域网都必须解决的共性问题。理解 介质访问控制方法的基本概念,需要注意以下两个问题。
(1)对术语“共享介质”、“多路访问”与“冲突"的理解
由于“共享介质”与“多路访问"术语是在局域网研究的早期出现的,因此以早期 Ethernet结构为例来说明这些术语的含义,读者会更容易理解。
早期Ethernet是用一条作为总线的同轴电缆连接多台计算机,对应的物理层协议是 10Base-2与10Base-5。在这种局域网结构中,连接多台计算机的同轴电缆称为“共享”的 “总线传输介质”,简称为“共享介质”。多个主机需要通过一条共享介质发送和接收数据就 称为“多路访问”或“多路存取”。如果有两个或两个以上的主机同时在一条共享介质发送数 据,那么多路的信号就会出现相互干扰,造成接收主机无法正确接收任何一台主机发送的数 据,这种现象称为“冲突”。
(2)对术语“介质访问控制方法”的理解
解决局域网“冲突”问题有两种基本的方法。第一种方法是在局域网中设立一个中心控 制主机,由它来决定其他连接在局域网中主机发送数据的顺序。这种控制方法的优点是简 单、有效;缺点是中心主机有可能成为局域网性能与可靠性的瓶颈。第二种方法采取分布式 控制的方法,局域网中不存在中心控制主机,而是由每个主机各自决定是否发送数据,以及 出现冲突时如何处理。这种方法称为“介质访问控制方法”。介质访问控制方法要解决以下 三个基本问题:什么时候发送数据?如何发现冲突?发生冲突怎么办?
三种不同的介质访问控制方法对应三种不同类型的局域网:
● 采用带有冲突检测的载波侦听多路访问(CSMA/CD)控 制方法的总线形Ethernet,称为“以太网’ ” 。
● 采用令牌控制的令牌总线形(Token Bus)局域网,称 为“TokenBus” 或“令牌总线网 。
● 采用令牌控制的令牌环形(Token Ring)局域网,称为 “Token Ring”或“令牌环网
CSMA/CD、Token Bus与Token Ring的不同之处:
●从物理结构的角度来看,CSMA/CD与Token Bus都是针 对总线型的局域网设计的。而TokenRing是针对环状拓 扑的局域网设计的。
(1)在使用CSMA/CD方法的Ethernet中,在相同的网络负载的条件下测试,传输速 率为10Mbps,实际带宽利用率只能达到44.7%。TokenBus与TokenRing在网络通信负 荷较重时,表现出很好的吞吐率与较低的传输延迟。
(2)TokenBus与TokenRing在网络通信重负荷中性能很高是以复杂的环控制功能 为代价的。要完成复杂的环控制功能,Token Bus与Token Ring的网卡与联网设备比较复 杂,硬件造价高,组网的费用远远超过采用CSMA/CD方法的Ethernet。
(3)随着个人计算机的广泛应用,办公自动化环境中计算机联网的需求快速增长,组网 费用低廉的Ethernet正好能适应这种对传输延迟要求不高的应用,因此Ethernet技术相对 于其他两种环网技术有很大市场优势。到20世纪90年代,局域网市场激烈竞争的局面已 经明朗,Ethernet产品基本上垄断了市场,Ethernet几乎成了局域网的代名词。
(4)对于工业环境中,例如工业控制、机器人控制、制造业设备与仪表的现场控制,这类 应用对数据传输实时性要求严格,建议使用TokenBus与TokenRing局域网。
Ethernet技术的发展背景
● Ethernet的核心技术是随机争用型介质访问控制方法(CSMA/CD) ;
● 随机争用技术起源于无线分组交换网一ALOHA网;
● 20世纪70年代初,Bob在ALOHA网基础上,提出了冲突检测、载波监 听与随机后退延迟算法;
●1972年, Xerox公司开始Ethernet实验网的研究; ●1973年, 将这种实验网改名为Ethernet;
● 1976年,Bob等人发表了具有里程碑意义的论文,指出Ethernet的核心 技术是介质存取访问控制方法CSMA/CD。 这种访问控制属于随机争 用型方法。
●1978年,Xerox公 司宣布了Ethernet产品;
●1981年,Xerox、 DEC与Intel联合宣布Ethernet V2.0规范;
●90年代,IEEE802.3标准中的物理层标准10Base-T推出,使得Ethernet性 能价格比大大提高;同年,Ethernet交 换机产品面世,标准着交换式局 域网的出现。
●目前,交换式Ethernet与最高速率为10Gb/s的高速Ethernet的出现,更 确立了它在局域网中的主流地位。
以太网的核心技术是CSMA/CD(载波监听多路访问/冲突检测)方法。
以太网起源于一个实验网络,该实验网络的目的是把几台个人计算机以3M的速率连接起来。由于该实验网络的成功建立和突出表现,引起了DEC,Intel,Xerox三家公司的注意,这三家公司借助该实验网络的经验,最终在1980年发布了第一个以太网协议标准建议书。
IEEE 802 委员会是 IEEE(电气和电子工程师协会)中的一个专门负责局域网和城域网标准制定的委员会。它的研究重点是开发和制定各种局域网和城域网技术的标准,以确保不同厂商生产的设备之间的互操作性。
在 IEEE 802 标准中,数据链路层被划分为两个子层:逻辑链路控制(LLC)子层和媒体访问控制(MAC)子层。
LLC 子层负责提供与上层协议的接口,并进行流量控制、差错控制等功能。它使得上层协议可以无需关心底层的物理拓扑结构和媒体访问控制方式。
MAC 子层则主要负责处理与物理媒体相关的问题,如介质访问控制、帧的传输和接收等。不同的局域网技术可能具有不同的 MAC 子层协议,以适应不同的物理媒体和拓扑结构。
IEEE 802 委员会制定的标准涵盖了多种局域网技术,如以太网、无线局域网(WLAN)、令牌环等。这些标准的制定有助于促进网络设备的互操作性,推动了局域网技术的发展和广泛应用。
IEEE802标准
● EEE802.1标准定义了局域网体系结构、网络互联,以及网络管 理与性能测试;
●EEE802.2标准定义了逻辑链路控制LLC子层功能与服务;
● 不同介质访问控制技术的相关标准:
●IEEE802.3定义了CSMA/CD总线介质访问控制子层与物理层的标准。
●IEEE802.11定义了无线局域网访问控制子层与物理层的标准。
●IEEE802.15定义了近距离个人无线网络访问控制子层与物理层的标 准。
●IEEE802.16定义了宽带无线城域网访问控制子层与物理层标准。
Ethernet数据发送流程分析
●载波侦听:发言前要监听以确定 是否已有人在发言的动作
●多路访问:每人都有平等的讲话机会
●冲突:若两人同时说话, 则发生
●冲突检测:发言人在发言过程中 要及时发现是否发生冲突
●一种极端的情况: A向B发送了数据,在数据信号正好快要达到B时, B也发送了数据,此时发生冲突。
● 等到冲突的信号传送回A,已经过两倍的传输延迟2τ,其中 τ =DN,其中D为总线最大长度,V是电磁波在介质中的传播速度。
●如果超过两倍的传播延迟( 2τ )时间没有检测出冲突,就能肯定 该结点已取得总线访问权,因此人们将2DN定义为冲突窗口。
●在Ethernet协议标准中,规定冲突窗口长度为51.2微秒,Ethernet的 数据传输速率为10Mbps,则可发送512bit (64B)数据。64字节是 以太网的最短帧的长度。这就意味着当一个结点发送一个最短帧, 或一个长帧的前64个字节数据时都没有发现冲突,则表示该结点已 经独自获得总线发送权,并可以继续发送后续的字节。
一个标准的以太网帧(不包括物理层的前导码和帧尾部)的最小长度是64个字节,最大长度为1518个字节(由MTU决定)。这个长度包括了目标MAC地址、源MAC地址、长度/类型字段、有效载荷(数据)和校验和字段。数据就承载在以太网帧的有效载荷内。如果要传输的数据大于MTU(最大传输单元)就会在传输的过程中进行切片,重新封装成数个以太网帧。
目的地址和源地址:分别表示帧的接收结点地址和发送结点的硬件地 址(即MAC地址、物理地址或Ethernet地址)。 长度为48位。
●单一地址:第一位为0,该帧只被与目的地址相同的结点所接收
● 多点地址:第一位为1,该帧只被- -组结点所接收
●广播地址:全为1,该帧被所有的结点接收。
在以太网帧结构中,目的地址和源地址字段具有重要的意义:
目的地址和源地址字段的正确设置和使用是以太网通信正常进行的关键。它们有助于实现设备之间的正确寻址和数据传输,确保网络的正常运行。此外,这些地址字段还与网络协议的其他部分相互配合,共同支持以太网的功能和特性。
以太网网卡通常采用循环冗余校验(CRC)方式来进行数据校验。CRC 是一种通过计算数据的校验值来检测数据错误的方法。
在以太网中,CRC 校验通常用于检测帧数据在传输过程中是否发生了错误。发送方在发送数据时,会计算数据的 CRC 值,并将其附加到帧的末尾。接收方在收到帧后,会重新计算 CRC 值,并与接收到的 CRC 值进行比较。如果两个 CRC 值不一致,就表示帧数据在传输过程中发生了错误。
CRC 校验的优点是简单、高效,能够快速检测到大部分数据错误。然而,它不能检测到所有类型的错误,例如数据的顺序错误或多位错误。在一些对数据完整性要求较高的应用中,可能需要使用更复杂的校验方法,如校验和、哈希校验等。
此外,一些以太网网卡还支持其他类型的校验和错误检测,例如 IP 校验和、TCP 校验和等。这些校验和在网络协议的不同层次上提供了额外的错误检测机制,以确保数据的完整性和正确性。
需要注意的是,具体的校验方式可能会因网卡的型号、网络协议的要求以及应用的需求而有所不同。在实际应用中,选择合适的校验方式需要综合考虑误码率要求、传输效率、硬件成本等因素。
以太网网卡的接口类型主要有以下几种:
在这些接口中,RJ45 接口是最广泛应用的接口类型。由于其普遍性和低成本,RJ45 接口在家庭、办公室和企业网络中被广泛使用。SFP 和 SFP+接口在需要高速、长距离光纤传输的情况下更为常见,如数据中心和网络核心设备。
然而,具体使用哪种接口取决于网络需求、设备兼容性和预算等因素。不同的应用场景和网络环境可能需要不同类型的接口来满足特定的要求。
以太网物理地址,也称为 MAC 地址,具有以下特点:
MAC 地址在以太网通信中起着重要的作用,它帮助设备之间进行正确的数据包寻址和传输。同时,MAC 地址也与网络安全、设备管理和故障排查等方面密切相关。
交换式局域网(Switched LAN,简称 S LAN)是指采用交换机或集线器等交换设备组成的局域网。交换式局域网的核心设备是交换机,它可以在多个端口之间同时建立多个并发连接,从而使得各端口之间的带宽得到充分的利用。
虚拟局域网(Virtual LAN,简称 VLAN)是一种将局域网内的设备逻辑地划分成多个网段的技术。通过将局域网内的设备划分为不同的VLAN,可以实现不同网段之间的隔离和通信控制。VLAN 可以基于设备的MAC 地址、IP 地址、端口号等多种方式进行划分。
交换式局域网和虚拟局域网的基本工作原理如下:
●建立和维护一个表示MAC地址与交换机端口号对应关系的映射表。
●在发送主机与接收主机端口之间建立虚连接。
●完成帧的过滤与转发。
●执行生成树协议,防止出现环路。
●局域网交换机的设计灵感来源于局域网桥。
●网桥以存储转发的方式,实现连接在不同缆段节点之间帧的交互。
●局域网交换机利用集成电路交换芯片在多个端口之间同时建立多个 虚连接,以实现多对端口之间帧的并发传输。
●以太网交换机可以有多个端口,每个端口可以单独与一个结点连接 (这类端口被称为“专用10Mbps的端口”), 也可以与一个共享介质式的以太网集线器连接 (这类端口被称为“共享10Mbps的口”)。
交换机端口转发表的建立与维护过程如下:
初始化:在交换机启动时,会建立一个空的端口转发表。
学习:交换机通过学习接收到的以太网帧的源MAC地址,建立端口-MAC地址映射表。
老化:为了保持端口转发表的准确性,交换机会定期对其进行老化。老化时间通常为300秒或5分钟。
更新:当交换机接收到一个数据帧时,它会检查该数据帧的目的MAC地址。如果该目的MAC地址在端口-MAC地址映射表中存在,但其对应的老化时间超过了老化时间间隔,则交换机会更新该目的MAC地址的老化时间。
删除:如果某个MAC地址在端口-MAC地址映射表中存在,但在一段时间内没有接收到来自该MAC地址的数据帧,则交换机会删除该MAC地址。
通过以上过程,交换机端口转发表可以保持准确和实时,从而确保数据帧可以正确地转发到目的端口。
交换机的交换方式主要有三种类型:直接交换、改进直接交换与存储转发交换方式。
(1)直接交换方式
在直接交换(cutthrough)方式中,交换机只要接收并检测到目的地址字段,立即将该 帧转发出去,而不进行差错校验。帧出错检测任务由主机完成。直接交换方式的优点是交 换延迟时间短,缺点是缺乏差错检测能力。
(2)改进直接交换方式
改进的直接交换方式则将二者结合起来,在接收到Ethernet帧的前64B后,判断帧头 字段是否正确,如果正确就转发出去。对于短的Ethernet帧来说,交换延迟时间与直接交 换方式比较接近;对于长的Ethernet帧来说,由于只对帧的地址字段与控制字段进行差错 检测,因此改进直接交换方式的交换延迟时间将会减少。
(3)存储转发交换方式
在存储转发(store and forward)方式中,交换机首先要完整地接收帧,并进行差错检 测。如果接收帧正确,则根据帧目的地址选择对应的输出端口号,然后转发出去。存储转发 交换方式的优点是具有帧差错检测能力,并支持不同输入速率与输出速率端口之间的帧转 发;缺点是交换延迟时间将会增长。
三种交换方式的比较如图:
交换机交换带宽的计算方法是:端口数X相应端口速率(全双工模式再乘以2)。例如, --台交换机有24个100Mbps全双工端口和两个1000Mbps全双工端口,如果所有的端口 都工作在全双工状态,那么交换机交换带宽为
需要注意的是:
(1)这是一个理想状态,没有考虑任何丢帧的情况,按每--个端口可能达到的线速来计 算的,因此交换机交换带宽也称为背板线速带宽。如果-一个端口是全双工端口,使用的是全 双工100Mbps的FastEthernet网卡,那么这个端口的线速就是200Mbps。
(2)从交换机的结构看,交换机的背板相当于计算机的总线,交换机的端口与转发机构 的数据交换都是通过交换机的背板实现的。因此,交换机的背板带宽决定了交换机的交换 带宽。背板带宽的定义是:交换机接口处理器、接口卡和数据总线之间单位时间内能够交 换的最大数据量。背板带宽标识了交换机总的数据交换能力。一台交换机的背板带宽越 宽,交换机的处理、交换、转发数据的能力就越强。 总结以上讨论的内容可以看出:交互式Ethernet采取以交换机取代集线器;以交换机 的并发连接取代共享总线的方式;以全双工方式取代半双工方式;以独占方式取代共享方式;由于不存在冲突,不采用CSMA/CD控制方法。为了保持与传统共享式Ethernet的兼 容性,交互式Ethernet保留了传统Ethernet的帧结构、最小与最大帧长度等一些根本的特征。这些技术极大地提高了局域网的性能,使得交互式局域网得到了广泛的应用。
IEEE于1999年公布关于VLAN的802.1Q标准。虚拟网络是建立在局域网交换机 之上,以软件方式来实现逻辑工作组的划分与管理。图中给出了传统局域网与虛拟局域 网结构比较示意图。
图4-22(a)给出了三个楼层分别用集线器组建的Ethernet,然后通过交换机将三个局域 网互联起来的结构示意图。网络中的所有主机都可以相互通信,但是如果出于网络安全的 需要将它们隔离成几个相对独立的局域网很困难。我们只能按楼层的物理位置进行划分, 但是如果希望将一个主机从LAN1改接到LAN2去,只能够重新布线。而VLAN技术可 以帮助我们很方便地解决这个问题。
设置4个VLAN即可实现
虚拟局域网有以下优点:
综上所述,虚拟局域网通过逻辑划分和隔离,提供了更高效、灵活和安全的网络管理方式,有助于提高网络的性能、可扩展性和安全性。
虚拟局域网(VLAN)的划分方法主要有以下几种:
以上是常见的 VLAN 划分方法,不同的厂商和产品可能会有一些差异。在实际应用中,通常会根据具体需求选择适当的划分方法。
802.1Q 帧结构是一种常见的 VLAN 协议标准。其长度为4 bytes,位于以太网帧中源 MAC 地址和长度/类型之间。802.1Q Tag 包含以下四个字段:
以太网帧从主机发出后,交换机会收到此数据帧,并给此数据帧打上一个VLAN Tag(VLAN ID就是交换机收到数据帧接口的VLAN ID),此数据帧变成了一个802.1q格式的帧。交换机检查目标MAC地址的主机接口所属的VLAN ID,如果此VLAN ID与802.1q帧格式中的VLAN ID一致,则转发该数据帧,否则丢弃。
在数据从交换机发往主机前,需要剥离掉VLAN TAG,使之还原为原始的以太网数据帧。
●交换式Ethernet采取以交换机取代集线器;以交换 机的并发连接取代共享总线的方式;以全双工方式取 代半双工方式;以独佔方式取代共享方式;由于不存 在冲突,不采用CSMA/CD控制方法。
●为了保持与传统共享式Ethernet的兼容性, 交换式 Ethernet保留了传统Ethernet的帧结构、最小 与最大帧长度等一些根本的特征。
FE协议特点
●100BASE-T物理层标准
●支持半双工与全双工工作模式
●可以提供半双工模式之外,也可以工作在全双工模式。
●全双工模式不存在争用问题,MAC层不需要采用CSMA/CD方法。
●增加了10Mbps与100Mbps速率自动协商功能
●具有10Mbps与100Mbps速率网卡共存的速率自动协商机制。
●自动协商只涉及到物理层,不需要人为干预,能够自动配置。
GE协议特点
(1)GE的传输速率达到了1000Mbps,但是它仍然保留着传统的Ethernet的帧格式与 最小.最大帧长度等特征。
(2) 802. 3z标准定义了千兆介质专用接口( gigabit media independent interface, GMII),将MAC子层与物理层分隔开。这样,物理层实现1000Mbps速率时使用的传输介 质和信号编码方式的变化,不会影响MAC层。
(3)目前流行的GE物理层标准如下。
①1000Base-CX:使用两对屏蔽双绞线,双绞线最大长度为25m。
②1000Base-T:使用4对5类非屏蔽双绞线同步收发信号,双绞线最大长度为100m。
③1000Base-SX:使用多模光纤,光纤最大长度为550m。
④1000Base-LX:使用单模光纤,光纤最大长度为5km。
⑤1000Base-LH:使用单模光纤,光纤最大长度为10km。
⑥1000Base ZX:使用单模光纤,光纤最大长度为70km。
双绞线最大长度为25m的1000BaseCX标准已经广泛应用于高性能计算机机房网络, 以及云计算数千台服务器与大量存储器设备之间的连接。长度达到70km的1000Base ZX 标准已经用于宽带城域网与广域网之中。
10GbE特点
(1) 10GbE保留着传统的Ethernet的帧格式与最小、最大帧长度的特征。
(2) 10GbE定义了介质专用接口10GMII,将MAC层与物理层分隔开。这样,物理层 在实现10Gbps速率时使用的传输介质和信号编码方式的变化不会影响MAC子层。
(3)10GbE只工作在全双工方式,例如在网卡与交换机之间使用两根光纤连接,分别完 成发送与接收的任务,因此不再采用CSMA/CD协议,这就使10GbE的覆盖范围不受传统 Ethernet的冲突窗口限制,因此传输距离只取决于光纤通信系统的性能。
(4) 10GbE 的应用领域已经从局域网逐渐扩展到城域网与广域网的核心交换网之中
(5) 10GbE的物理层协议分为:局域网物理层标准与广域网物理层标准两类。
40GbE、100GbE特点:
Fast Ethernet(快速以太网)和 Gigabit Ethernet(千兆以太网)的物理层协议标准如下:
需要注意的是,这些标准只是常见的示例,实际应用中可能还有其他变体或扩展。此外,不同的物理层协议标准可能在传输距离、电缆类型、连接器等方面存在差异,以适应不同的网络环境和需求