- 基于社交网络算法优化的二维最大熵图像分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法php开发语言
智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码文章目录智能优化算法应用:基于社交网络优化的二维最大熵图像阈值分割-附代码1.前言2.二维最大熵阈值分割原理3.基于社交网络优化的多阈值分割4.算法结果:5.参考文献:6.Matlab代码摘要:本文介绍基于最大熵的图像分割,并且应用社交网络算法进行阈值寻优。1.前言阅读此文章前,请阅读《图像分割:直方图区域划分及信息统计介绍》htt
- 神经网络-损失函数
红米煮粥
神经网络人工智能深度学习
文章目录一、回归问题的损失函数1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的损失函数1.0-1损失函数(Zero-OneLossFunction)2.交叉熵损失(Cross-EntropyLoss)3.合页损失(HingeLoss)三、总结在神经网络中,损失函数(LossFunction)扮演着至关重要的角色,它
- 自信
净域
今天我打击了某人的自信我的自信回来了损有余而补不足不得不说我喜欢这个特殊的正能量不是会放大缩小而是类似熵平衡的那种奇怪的平衡
- 几率odds与逻辑回归
元气小地瓜
https://www.jianshu.com/p/aa73938f32ee几率odds从Odds角度理解LogisticRegression模型的参数13December20151.引言无论在学术界,还是在工业界,LogisticRegression(LR,逻辑回归)模型[1]是常用的分类模型,被用于各种分类场景和点击率预估问题等,它也是MaxEntropy(ME,最大熵)模型[2],或者说So
- 毕设项目 基于特征熵值分析的网站分类系统实现(源码+论文)
iuidfds
毕业设计毕设
文章目录0项目说明1研究目的2研究方法3研究结论4各模块介绍4.1爬虫模块功能与技术4.2网页处理模块功能与技术4.3特征提取与文本特征表示模块功能与技术4.4分类器模块功能与技术5项目源码6论文目录7最后0项目说明基于特征熵值分析的网站分类系统实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1研究目的本设计对KNN算法的缺陷产生原因进行详细地分析,并针对缺陷对算法进行了引入属性熵值等一
- 【机器学习】4 ——熵
qq_43507078
我的机器学习机器学习人工智能
机器学习4——熵文章目录机器学习4——熵前言前言熵衡量随机变量不确定性,由克劳德·香农(ClaudeShannon)在1948年提出,称为香农熵。反映了一个系统中信息的混乱程度或信息量。其定义为:H(P)=−∑xP(x)logP(x)H(P)=-\sum_{x}^{}P(x)logP(x)H(P)=−x∑P(x)logP(x)其中:X是一个随机变量,它有种可能的取值P(x)是X取值为x的概率。熵H
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- Focal Loss的简述与实现
友人Chi
人工智能机器学习深度学习
文章目录交叉熵损失函数样本不均衡问题FocalLossFocalLoss的代码实现交叉熵损失函数Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p})=-ylog(\hat{p})-(1-y)log(1-\hat{p})Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)其中p^\hat{p}p^为预测概率大小。此处的交叉
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 2021-07-23——第23课:每个人的生命中需要一名个人成长教练——学习打卡
a吃饭
有几年时间,我都是掉到自己的情绪和事件里面,一直没跳出来。每次鼓起信念去坚持,然后遇到点什么情绪,就被打败了。一段时间后又鼓起勇气去尝试,然后发生了点什么事,就又被打败了。就这样反反复复几年后,我加入了007,7天写一篇的节奏,不快,但是有时候我还是很艰难才坚持下来,但是一年多后,我发现我可以很轻松了。就像现在,我已经做到日更一百多天了。我才发现,我是受到了007里正向人的影响。以前闭门造车,熵不
- 如何利用python实现碰撞原理
加密社
福利资源区块链python开发语言
先看图跑了大概一天这是结果具体是通过BIP39规则生成的种子数据生成完词组后,再根据词组生成姨太地址#生成随机助记词defgenerate_mnemonic():entropy=os.urandom(16)#随机生成16字节熵mnemonic=[]foriinrange(12):#生成12个助记词word_index=int.from_bytes(entropy[i:i+1],'big')%len
- 《逆熵增成长之路》:如何让学到的知识更有价值?
米卡写作
今天继续阅读《逆熵增成长之路》第六章:输入-思考-思考篇,有以下3个感悟,分享给大家。1.什么样的知识值得学?2.如何提高学习效率?3.如何让知识变得更有价值?认真看完,你一定会有所收获。01.什么样的知识值得学?人们常说:你接触什么样的信息,决定你成为什么样的人。这就需要我们控制好自己的信息输入源,包括看什么书、关注什么样的公众号、视频号等。那什么是好的信息输入源呢?《逆熵增成长之路》上提到的4
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 心熵,心流,以及复盘3R
热血青年John
今天学到了两个新词汇---心熵和心流。用自己的话来反馈一下。在化学反应体系里,熵值越大,反应越不稳定。大脑思维不集中的时候瞻前顾后,或者思维活跃的有些可怕一会儿思考宇宙尽头人类与黑洞的联系一会儿纠结待会儿吃啥,大脑处于一种混乱状态,意识里可能只有几个念头,但潜意识里可能有多得多的念头在相互碰撞,争夺者你的注意力和大脑的控制权,这时候你的大脑就像是一个热气膨胀的锅,里面的热烫的气体肆意翻腾,照顾之间
- 机器学习和深度学习中常见损失函数,包括损失函数的数学公式、推导及其在不同场景中的应用
早起星人
机器学习深度学习人工智能
目录引言什么是损失函数?常见损失函数介绍3.1均方误差(MeanSquaredError,MSE)3.2交叉熵损失(Cross-EntropyLoss)3.3平滑L1损失(SmoothL1Loss)3.4HingeLoss(合页损失)3.5二进制交叉熵损失(BinaryCross-EntropyLoss)3.6KL散度(KLDivergence)3.7Huber损失(HuberLoss)3.8对比
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- 数学基础 -- 梯度下降算法
sz66cm
算法人工智能数学基础
梯度下降算法梯度下降算法(GradientDescent)是一种优化算法,主要用于寻找函数的局部最小值或全局最小值。它广泛应用于机器学习、深度学习以及统计学中,用于最小化损失函数或误差函数。梯度下降的基本概念梯度下降算法通过以下步骤工作:初始化参数:随机初始化模型的参数(如权重和偏差),也可以用特定的策略初始化。计算损失:对当前模型输出和实际目标值计算损失(如均方误差、交叉熵等)。计算梯度:计算损
- 一屋不扫,何以扫天下
活着不易
“一屋不扫,何以扫天下”这篇作文在我初中的时候就写过,无非是人首先要修炼自己,自身本领强,方能打天下。人应该有自己的良好习惯、行为举止,包括处所洁净........如今看来当时我是懂了道理,却并不深刻。人到中年方知“使熵值减小”的人才能自食其力、有所成就、有所作为。只有不断对自己整合,才能不断进步和接近完美。而熵是什么?熵即混乱度,越混乱熵值就会越大。一个人总是乱糟糟的,毫无计划,东西乱放,衣服乱
- 2019给吴军老师的第一封信
启航_FLY
吴军老师好:所谓信息的相关性,可以从宏观和微观两个角度思考。从宏观的角度上讲就是要把信息放到系统中去思考。因为在系统中信息的形态是不断变化的,这一点对于使用信息,继而要认识、利用和改变系统的人是十分重要的,信息的形式虽然分散,但基于某种原因,却往往能在有意无意间汇聚成一条条或大或小的脉络,其核心正是老师提到的人类认知世界的本源。物质也好,能量也罢,在历史的演化中都逃不过一个目的性。因为信息负熵迫使
- 王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?
晓芳聊职场
王晓芳在增长势能课上提到的这个定律,为什么让全宇宙都绝望?企业家最深的痛就是增长乏力---王晓芳授课老师|王晓芳壹创新商学创办人2019年壹创新商学课上,王晓芳教授分享了“熵增定律”,同时以华为为例,讲述了企业管理是如何通过“耗散结构”进行“反熵增”,从而活下去。熵增定律,也叫“热力学第二定律”。这是德国人克劳修斯提出的理论,最初用于揭示事物总是向无序的方向的发展、以及“孤立系统下热量从高温物体流
- 将自己产品化
飞叶灵
今天开始读《纳瓦尔宝典》,文章开篇的核心,人生应该让自己走思维体系和思维模式更新之路。在各个学科中建立自己的思维体系,高数中微积分的思维体系,大物中的熵的思维体系,《道德经》中天人合一,道法自然体系等等。像樊登老师最喜欢提及的认知ABC的看法模型一样,我们需要在各种知识、宗教、娱乐中学习提升自己看到每一件事情发生的产生的影响的看法B,通过看法B把那些不如意的事情看到背后的祝福……这不由让我想起了,
- 基于熵权法对Topsis模型的修正
钰见梵星
数学建模算法
基于熵权法对Topsis模型的修正有n个要评价的对象,m个评价指标的标准化矩阵,可以使用层次分析法给这m个评价指标确定权重∑j=1mωj=1\sum_{j=1}^m{\omega_j}=1j=1∑mωj=1层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)熵权法是一种客观赋权方法依据的原理:指标的变异程度越小,所反映的信息量也越少,
- CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能算法深度学习信号处理matlab
CEEMDAN(自适应噪声完备集合经验模态分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵对序列信号进行CEEMDAN(自适应噪声完备集合经验模态)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。并输出分解图、包络图、包络谱图、峭度值图、频谱图。下面对所涉及算法及运行效果进行介绍好的,下面
- SGMD(辛几何分解)+峭度值+能量熵+近似熵+模糊熵+排列熵+多尺度排列熵+样本熵
2301_78492934
人工智能matlab信号处理
对序列信号进行SGMD(辛几何分解)分解后计算各分解分量峭度值、能量熵、近似熵、模糊熵、排列熵、多尺度排列熵、样本熵,程序实用性高,适合故障诊断、功率预测等研究方向信号处理。可输出分解图、包络图、包络谱图、峭度值图、频谱图。从Excel表格中读取,直接替换数据就可以使用,matlab代码SGMD(辛几何模态分解)辛几何模态分解(SGMD)是一种基于辛几何理论的信号分解方法。辛几何是一种数学框架,用
- 蓝桥杯刷题--python-9(2023填空题2)
芝士小熊饼干
l蓝桥杯刷题python蓝桥杯python
001串的熵-蓝桥云课(lanqiao.cn)importmathn=23333333foriinrange(1,n>>1):j=n-ia=-(i/n)*(math.log2(i/n))*i-(j/n)*(math.log2(j/n))*ja=round(a,4)ifa==11625907.5798:print(i)break0求和-蓝桥云课(lanqiao.cn)n=20230408print(
- 4D习书-第十四章 人们需要被包融的感觉
明心悦己
本章主要讲述了人们为什么需要包融和包融的好处。A.我的关注点马斯洛的需求层次理论说明人们在感到被感激和包融之前,不可能向更高层的任务(解决问题或者进行创造)迈进。最好的说服是用上耳朵,因为人们需要被聆听的感觉。M.情绪和内心独白的确是这样的,如果人们没有感觉到舒服,就会有精神熵,会限制他们的创造性。B.让自己更好的行动耐心听老公说话,除了向他表示感激,更多去倾听、包融他的行为,让他在家里感觉到舒服
- 追求规则生活的自由——今天开始第一天日更
谷气质
已经体验不规则生活体验了好久,不规则的生活让我觉得自由,那是之前,经历过一段时间大概是辛苦的工作以后吧,现在几乎已经忘了那时的忙碌。现在更加体会到其实那样规则的生活不一定代表不自由,这样混乱不规则的生活也不一定就是自由,射手座的人对自由要求比较多。规则的生活至少让我不用去想那么多。只是按部就班的做事就好,当打乱之前生活的节奏,每天不知道该干什么的时候,反而会大脑和心都处于增熵过程中,需要耗费精力。
- 蓝桥杯:01串的熵讲解(C++)
DaveVV
蓝桥杯c++蓝桥杯c++c语言算法数据结构
01串的熵本题来自于:2023年十四届省赛大学B组真题(共10道题)主要考察:暴力。代码放在下面,代码中重要的细节全都写了注释,非常清晰明了:#includeusingnamespacestd;intmain(){//请在此输入您的代码intn=23333333;//01串的长度doubletarget=11625907.5798;//信息熵的目标值for(inti=0;i(i)/n;//强转,让
- 【BIOS】解锁BIOS隐藏菜单/高级选项
啵啵啵啵哲
BIOS搞机windows
免责声明:修改BIOS存在风险,请谨慎操作。作者不对因操作不当而导致的任何后果负责。一些默认的BIOS菜单选项相当有限,无法进行一些高级选项的修改。通过修改BIOS内容,我们可以解锁被隐藏的高级菜单,如Above4GDecoding、ResizableBar等。本教程将介绍如何解锁这些隐藏菜单。本教程与工具参考/来源:(1)B站视频:熵阳之昕:人人都能解锁BIOS隐藏选项最新最简单(AMIBIOS
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa