- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- pytorch-数学运算
码啥码
深度学习之pytorchpytorch深度学习python
四则运算加减乘除add+sub-mul*div/a=torch.rand(3,4)b=torch.rand(4)a,b'''(tensor([[0.2384,0.5022,0.7100,0.0400],[0.1716,0.0894,0.0795,0.1456],[0.7635,0.9423,0.7649,0.3379]]),tensor([0.8526,0.8296,0.1845,0.7922])
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 【PyTorch】保存和加载模型
Jackilina_Stone
#DeepLearningpytorchpython人工智能深度学习模型
目录■state_dict■用于推理的保存和加载模型保存/加载state_dict保存/加载整个模型以TorchScript格式导出/加载模型■保存和加载用于推断和/或恢复训练的一般检查点(Checkpoint)■将多个模型保存在一个文件中■使用来自不同模型的参数进行暖启动(Warmstarting)模型■跨设备保存和加载模型保存在GPU,加载到CPU保存在GPU,加载到GPU保存在CPU,加载到
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 【大模型学习 | 量化】pytorch量化基础知识(1)
九年义务漏网鲨鱼
算法学习pytorch人工智能
pytorch量化[!note]官方定义:performingcomputationsandstoringtensorsatlowerbitwidthsthanfloatingpointprecision.支持INT8量化,可以降低4倍的模型大小以及显存需求,加速2-4倍的推理速度通俗理解:降低权重和激活值的精度(FP32→INT8),从而提高模型大小以及显存需求。一、前置知识1.1算子融合将多个
- pytorch 要点之雅可比向量积
AI大模型教程
pytorch人工智能pythonfacebook深度学习机器学习webpack
自动微分是PyTorch深度学习框架的核心。既然是核心,就需要敲黑板、划重点学习。同时,带来另外一个重要的数学概念:雅可比向量积。PyTorch中的自动微分与雅可比向量积自动微分(AutomaticDifferentiation,AD)是深度学习框架中的关键技术之一,它使得模型训练变得更加简单和高效。且已知:PyTorch是一个广泛使用的深度学习框架,它内置了强大的自动微分功能。在本文中,我们将深
- 深度学习计算机视觉开源系统OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置【详细、可运行】
nomoremorphine
深度学习计算机视觉开源
OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置OpenMMLab简介优势:一、Windows/Linux下环境配置(以mmsegmentationv1.2.2(最新版)为例)0.确认安装版本信息1)确认电脑显卡版本2)确认mmcv对应版本3)确认版本1.安装CUDA和cuDNN2.创建conda环境,下载pytorch3.安装mmcv4.安装MMS
- Python Robot Framework【自动化测试框架】简介
老胖闲聊
Python库大全python开发语言
想全面了解DeepSeek的看过来【包邮】DeepSeek全攻略人人需要的AI通识课零基础掌握DeepSeek的实用操作手册指南【限量作者亲笔签名版售完即止】玩转DeepSeek这本就够了【自营包邮】DeepSeek实战指南deepseek从入门到精通实用操作指南现代科技科普读物AI普及知识读物人工智能使用教程中小学读物京东超级618Python初学者的入门教程动手学深度学习PyTorch版李沐和
- PyTorch版本匹配终极指南:手把手教你避开99%的安装坑
被版本支配的恐惧(真实故事)上周我的学弟兴冲冲跑来:“师兄!我照着CSDN教程装PyTorch,结果训练时直接报错cudaruntimeerror!”我一看他的环境——Python3.12强行装PyTorch1.8,搭配CUDA11.6…(此时应有乌鸦飞过)这就像用Win11系统装XP时代的显卡驱动,能不翻车吗?!一、版本对应表(2024最新版)(掏出小本本记重点!!!)这是我整理的最新版本对应关
- anaconda创建python3.7环境_anaconda使用以及创建python3.7+pytorch1.0虚拟环境以及Jupyter notebook初级使用...
weixin_39837124
查看所有已安装的软件包$condalist#packagesinenvironmentatS:\Users\jiangshan\Anaconda3:##NameVersionBuildChannel_ipyw_jlab_nb_ext_conf0.1.0py37_0defaultsalabaster0.7.12py37_0defaultsanaconda2018.12py37_0defaults..
- Anaconda 创建python3.9+pytorch1.10.1+cuda11.3环境
canny_kevin
DeepLearningPythonpythonconda
1.打开AnacondaPowershellPrompt2.创建conda环境condacreate--nameRordAIpython=3.9conda一些命令condainfo--envs:输出中带有【*】号的的就是当前所处的环境condalist:看这个环境下安装的包和版本condainstallnumpyscikit-learn:安装numpysklearn包condaenvremove-
- Pytorch血泪安装史好吗(GPU版本+cuda12.1+python3.9.13)
宇宙最强袋鼠
pytorchpython人工智能
1.安装cuda首先看下自己电脑是CPU还是GPU,看自己电脑对应的cuda版本看右下角英伟达标识,点击组件,我的cuda版本是12.3,但最后发现安12.1比较好2.安装12.1cuda版本对应的cudnn前两步可以看参考:Pytorch的安装,有点繁琐但是很详细,保姆级教程不信你安装不成功(Cuda+Cudnn+Anaconda+Pytorch)_pytorch安装-CSDN博客3.anaco
- 用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
点我头像干啥
AI深度学习pytorch神经网络
引言在深度学习领域,研究人员不断探索更接近生物神经系统工作方式的模型。液态神经网络(LiquidNeuralNetworks,LNN)正是这样一种受生物神经元动态特性启发的创新架构。本文将带你了解LNN的核心概念,并展示如何使用PyTorch实现这种前沿模型。一、什么是液态神经网络?液态神经网络是由MIT研究人员提出的一种新型神经网络架构,它模仿了生物神经系统的几个关键特性:动态连接:神经元之间的
- 第37节:PyTorch数据加载与预处理
点我头像干啥
pytorch人工智能python
1.引言在深度学习项目中,数据加载与预处理是构建高效模型的关键环节。PyTorch作为当前最流行的深度学习框架之一,提供了一套完整且灵活的数据处理工具链。本文将全面介绍PyTorch中的数据加载与预处理机制,涵盖从基础概念到高级技巧的各个方面。2.PyTorch数据加载核心组件2.1Dataset类torch.utils.data.Dataset是PyTorch中所有数据集处理的抽象基类,代表数据
- python学习笔记(深度学习)
天水幼麟
python学习笔记
文章目录1、概述2、学习内容2.1、pytorch常见语法2.1.1、sum2.1.2、广播机制2.1.3、张量1、概述本篇博客用来记录,在深度学习过程中,常用的python语法内容2、学习内容2.1、pytorch常见语法2.1.1、sum在PyTorch中,torch.sum()是一个非常常用的函数,用于对张量(Tensor)进行求和操作。它的核心作用是沿着指定的维度对张量元素进行累加,支持灵
- 深入GPU编程:从硬件架构到内核优化
Kaydeon
硬件架构
深入GPU编程:从硬件架构到内核优化在当今由大型模型驱动的AI时代,GPU集群已成为推动技术进步的核心引擎。然而,仅仅让代码在GPU上“运行”与让其“高效运行”之间存在着巨大的性能鸿沟。对于动辄需要数千甚至数万GPU小时进行训练的超大规模模型而言,这一鸿沟直接关系到研发成本、迭代速度和最终的科研成果。一个未经优化的操作可能在不经意间将训练时间延长数倍,造成巨大的资源浪费。PyTorch、Tenso
- 理解python、anaconda、pytorch以及pycharm之间的关系
幸运小仙
pythonpytorchpycharm
1.Python:编程语言,是基础Python是一种高级的、通用的编程语言。它以其简洁的语法、丰富的库和强大的社区支持而闻名。在数据科学、机器学习和深度学习领域,Python是主要的编程语言。可以使用Python编写代码来处理数据、构建模型、进行实验等。2.Anaconda:Python的发行版,提供便利Anaconda是一个流行的Python发行版,它包含了Python解释器以及许多常用的科学计
- bitsandbytes 入门教程
苏承根
bitsandbytes入门教程项目地址:https://gitcode.com/gh_mirrors/bi/bitsandbytes1.项目介绍bitsandbytes是一个用于PyTorch的库,专注于8位优化器和量化算法。它旨在通过高效的k比特量化技术,使得大型语言模型在资源受限的环境下也能运行,从而提高计算效率并降低内存占用。2.项目快速启动首先,确保你的环境中已经安装了PyTorch。如
- bitsandbytes 安装和配置指南
黎沁颖Desired
bitsandbytes安装和配置指南bitsandbytes8-bitCUDAfunctionsforPyTorch项目地址:https://gitcode.com/gh_mirrors/bi/bitsandbytes1.项目基础介绍和主要编程语言项目基础介绍bitsandbytes是一个轻量级的Python库,主要用于在PyTorch中实现k-bit量化,从而使得大规模语言模型(LLM)更加易
- Python 里 PyTorch 的生成对抗网络架构
Python编程之道
pythonpytorch生成对抗网络ai
Python里PyTorch的生成对抗网络架构关键词:PyTorch、生成对抗网络(GAN)、深度学习、神经网络、计算机视觉、对抗训练、生成模型摘要:本文深入探讨了在PyTorch框架下实现生成对抗网络(GAN)的完整架构。我们将从GAN的基本原理出发,详细讲解其核心组件、数学基础,并通过PyTorch代码实现一个完整的GAN模型。文章涵盖了从理论到实践的各个方面,包括模型设计、训练技巧、常见问题
- CUDA与PyTorch(GPU)的对应关系
CUDA与PyTorch(GPU)的对应关系:(需要自己按需求去找):https://pytorch.org/get-started/previous-versions/表二:CUDAToolkit版本及可用PyTorch对应关系CUDAToolkit版本可用PyTorch版本7.50.4.1,0.3.0,0.2.0,0.1.12-0.1.68.01.1.0,1.0.0,0.4.19.01.1.0
- Python学习Day33
m0_64472246
python打卡学习python
学习来源:浙大疏锦行一、PyTorch和CUDA的安装:给电脑装“超级计算器”通俗解释PyTorch:是一个专门用于深度学习的“工具箱”,类似程序员的“智能积木”,能快速搭建神经网络。CUDA:是NVIDIA显卡的“加速引擎”,相当于给电脑的显卡装了一个“超级计算器”,让它能快速计算复杂的数学问题(如图像识别、数据训练)。安装逻辑:先装CUDA(显卡的“计算器驱动”),再装PyTorch(用这个计
- 人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解1
微学AI
AI算法工程师(中级)课程自然语言处理实战人工智能神经网络算法LSTMgru
大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程12-PyTorch神经网络之LSTM和GRU网络与代码详解。在深度学习领域,循环神经网络(RNN)因其处理序列数据的能力而备受关注。然而,传统的RNN存在梯度消失和梯度爆炸的问题,这使得它在长序列任务中的表现不尽如人意。为了解决这一问题,长短时记忆网络(LSTM)和门控循环单元(GRU)应运而生。本文将详细介绍LSTM和GRU
- 基于PyTorch的MNIST手写数字识别(配置手写板使用)
热心不起来的市民小周
CV项目实操pytorch人工智能python
基于PyTorch的MNIST手写数字识别(配置手写板使用)代码详见:https://github.com/xiaozhou-alt/CNN_MNIST文章目录基于PyTorch的MNIST手写数字识别(配置手写板使用)一、项目介绍二、数据集介绍三、项目实现1.环境准备2.项目文件夹结构3.数据预处理4.开始训练!(1)数据加载(2)数据转换(3)模型定义(4)训练过程(5)评估测试四、结果展示一
- 开源项目教程:Learning to See in the Dark
包椒浩Leith
开源项目教程:LearningtoSeeintheDarkpytorch-Learning-to-See-in-the-Dark项目地址:https://gitcode.com/gh_mirrors/pyt/pytorch-Learning-to-See-in-the-Dark项目介绍pytorch-Learning-to-See-in-the-Dark是一个使用PyTorch框架实现的项目,旨在
- Pytorch 实战三 Cifar 10 数据加载
四川兔兔
Pytorchpytorch人工智能python
系列文章目录文章目录系列文章目录前言一、原始数据的读取二、数据的加载源代码标签加工辅助核心类前言 前两个实战然我们基本学会了Pytorch的使用,本文的Cifar10是经典的人工智能深度学习数据集。将详细介绍数据输入、网络搭建等其中的细致处理,这几个工程下来,我们一定会学会Pytorch编程的。一、原始数据的读取 Cifar10的数据集下载地址(可以在官网,这里我给出网盘地址):通过网盘分享的
- 【Pytorch学习笔记】模型模块09——VGG详解
越轨
Pytorch学习笔记pytorch学习笔记深度学习人工智能python
一、VGG核心设计原理小卷积核堆叠用多层3×3卷积替代大卷积核(如5×5/7×7)数学原理:2层3×3卷积感受野等效于5×5:RFout=(RFin−1)×stride+KRF_{out}=(RF_{in}-1)\timesstride+KRFout=(RFin−1)×stride+K参数量对比:3层3×3卷积(3×(32C2)=27C23×(3^2C^2)=27C^23×(32C2)=27C2)
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。