LeetCode 231-240

231. 2的幂

暴力法,时间复杂度O(logn):

class Solution {
    public boolean isPowerOfTwo(int n) {
        if (n <= 0) {
            return false;
        }
        while (n % 2 == 0) {
            n /= 2;
        }
        return n == 1;
    }
}

2的幂一共只可能有31个数,逐个判断即可,时间复杂度O1:

class Solution {
    public boolean isPowerOfTwo(int n) {
        if (n <= 0) {
            return false;
        }
        int x = 1;
        for (int i = 1; i <= 31; i++) {
            if (x == n) {
                return true;
            }
            x <<= 1;
        }
        return false;
    }
}

位运算,n 二进制最高位为 1,其余所有位为 0。n - 1二进制最高位为 0,其余所有位为 1,只要n & (n-1) ==0 就是2的幂。

时间复杂度O1:

class Solution {
    public boolean isPowerOfTwo(int n) {
        return n > 0 && (n & (n - 1)) == 0;
    }
}

232. 用栈实现队列

class MyQueue {
    Deque stack1, stack2;

    /**
     * Initialize your data structure here.
     */
    public MyQueue() {
        stack1 = new ArrayDeque<>();
        stack2 = new ArrayDeque<>();
    }

    /**
     * Push element x to the back of queue.
     */
    public void push(int x) {
        while (!stack2.isEmpty()) {
            stack1.push(stack2.pop());
        }
        stack1.push(x);
        while (!stack1.isEmpty()) {
            stack2.push(stack1.pop());
        }
    }

    /**
     * Removes the element from in front of queue and returns that element.
     */
    public int pop() {
        return stack2.pop();
    }

    /**
     * Get the front element.
     */
    public int peek() {
        return stack2.peek();
    }

    /**
     * Returns whether the queue is empty.
     */
    public boolean empty() {
        return stack2.isEmpty();
    }
}

233. 数字 1 的个数

234. 回文链表

借助数组很容易判断,时间复杂度On,空间复杂度On:

class Solution {
    public boolean isPalindrome(ListNode head) {
        List list = new ArrayList<>();
        while (head != null) {
            list.add(head.val);
            head = head.next;
        }
        int i = 0, j = list.size() - 1;
        while (i < j) {
            if (list.get(i).equals(list.get(j))) {
                i++;
                j--;
            } else {
                return false;
            }
        }
        return true;
    }
}

使用快慢指针,时间复杂度On,空间复杂度O1:

class Solution {
    public boolean isPalindrome(ListNode head) {
        if (head == null) {
            return true;
        }
        ListNode slow = head, fast = head;
        while (fast.next != null && fast.next.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        ListNode head2 = slow.next;
        slow.next = null;
        ListNode dummyHead2 = new ListNode(0);
        while (head2 != null) {
            ListNode temp = head2.next;
            head2.next = dummyHead2.next;
            dummyHead2.next = head2;
            head2 = temp;
        }
        head2 = dummyHead2.next;
        while (head != null && head2 != null) {
            if (head.val != head2.val) {
                return false;
            }
            head = head.next;
            head2 = head2.next;
        }
        return true;
    }
}

235. 二叉搜索树的最近公共祖先

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        while (true) {
            if (p.val < root.val && q.val < root.val) {
                root = root.left;
            } else if (p.val > root.val && q.val > root.val) {
                root = root.right;
            } else {
                break;
            }
        }
        return root;
    }
}

236. 二叉树的最近公共祖先

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root == null || root == p || root == q) {
            return root;
        }
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);
        if (left == null) {
            return right;
        } else if (right == null) {
            return left;
        } else {
            return root;
        }
    }
}

237. 删除链表中的节点

class Solution {
    public void deleteNode(ListNode node) {
        ListNode pre = node;
        while (node.next != null) {
            node.val = node.next.val;
            pre = node;
            node = node.next;
        }
        pre.next = null;
    }
}

238. 除自身以外数组的乘积

先计算前缀积和后缀积,再遍历每个数的时候直接调用结果。
时间复杂度On,空间复杂度On。

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int len = nums.length;
        int[] pre = new int[len], post = new int[len];
        pre[0] = nums[0];
        for (int i = 1; i < len; i++) {
            pre[i] = pre[i - 1] * nums[i];
        }
        post[len - 1] = nums[len - 1];
        for (int i = len - 2; i >= 0; i--) {
            post[i] = post[i + 1] * nums[i];
        }
        int[] res = new int[len];
        for (int i = 0; i < len; i++) {
            res[i] = (i - 1 >= 0 ? pre[i - 1] : 1) * (i + 1 <= len - 1 ? post[i + 1] : 1);
        }
        return res;
    }
}

239. 滑动窗口最大值

dp,比暴力稍微快一点,时间复杂度On^2 :

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int[] dp = new int[nums.length - k + 1];
        dp[0] = nums[0];
        for (int i = 1; i < k; i++) {
            dp[0] = Math.max(dp[0], nums[i]);
        }
        for (int i = 1; i < dp.length; i++) {
            if (nums[i - 1] == dp[i - 1]) {
                dp[i] = nums[i];
                for (int j = i + 1; j < i + k; j++) {
                    dp[i] = Math.max(dp[i], nums[j]);
                }
            } else {
                dp[i] = Math.max(dp[i - 1], nums[i + k - 1]);
            }
        }
        return dp;
    }
}

240. 搜索二维矩阵 II

每一行使用二分搜索,时间复杂度Onlogn:

class Solution {
    public boolean search(int[] arr, int target) {
        int lo = 0, hi = arr.length - 1;
        while (lo <= hi) {
            int mid = lo + (hi - lo) / 2;
            if (arr[mid] > target) {
                hi--;
            } else if (arr[mid] == target) {
                return true;
            } else if (arr[mid] < target) {
                lo++;
            }
        }
        return false;
    }

    public boolean searchMatrix(int[][] matrix, int target) {
        for (int i = 0; i < matrix.length; i++) {
            if (search(matrix[i], target)) {
                return true;
            }
        }
        return false;
    }
}

优化:
从左下角出发,上面的数一定小于它,右边的数一定大于它,不断的往右上角走,如果遇到了target则返回true,如果走到边界了则返回false。

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        int row = matrix.length - 1, col = 0;
        while (row >= 0 && col < matrix[0].length) {
            if (matrix[row][col] > target) {
                row--;
            } else if (matrix[row][col] == target) {
                return true;
            } else if (matrix[row][col] < target) {
                col++;
            }
        }
        return false;
    }
}

你可能感兴趣的:(LeetCode 231-240)