【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II

代码随想录算法训练营任务安排

    • 491.递增子序列
      • 思路
      • 回溯三部曲
    • 46.全排列
      • 思路
      • 回溯三部曲
    • 47.全排列II
      • 思路

491.递增子序列

思路

【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II_第1张图片

回溯三部曲

  1. 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
  1. 终止条件

本题收集结果有所不同,题目要求递增子序列大小至少为2

if (path.size() > 1) {
    result.push_back(path);
    // 注意这里不要加return,因为要取树上的所有节点
}
  1. 单层搜索逻辑

【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II_第2张图片
同一父节点下的同层上使用过的元素就不能再使用了

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
    if ((!path.empty() && nums[i] < path.back())
            || uset.find(nums[i]) != uset.end()) {
            continue;
    }
    uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
    path.push_back(nums[i]);
    backtracking(nums, i + 1);
    path.pop_back();
}

unordered_set uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

完整代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            result.push_back(path);
            // 注意这里不要加return,要取树上的节点
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || uset.find(nums[i]) != uset.end()) {
                    continue;
            }
            uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};

代码随想录 | 491.递增子序列

46.全排列

思路

【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II_第3张图片

回溯三部曲

  1. 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:
【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II_第4张图片

vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  1. 递归终止条件

【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II_第5张图片
可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

// 此时说明找到了一组
if (path.size() == nums.size()) {
    result.push_back(path);
    return;
}
  1. 单层搜索的逻辑

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。

for (int i = 0; i < nums.size(); i++) {
    if (used[i] == true) continue; // path里已经收录的元素,直接跳过
    used[i] = true;
    path.push_back(nums[i]);
    backtracking(nums, used);
    path.pop_back();
    used[i] = false;
}

完整代码

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (used[i] == true) continue; // path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

代码随想录 | 46.全排列

47.全排列II

思路

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:
【代码随想录算法训练营】第二十九天打卡 | 491.递增子序列、46.全排列、47.全排列II_第6张图片
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。

完整代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝nums[i - 1]使用过
            // used[i - 1] == false,说明同一树层nums[i - 1]使用过 
            // 如果同一树层nums[i - 1]使用过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracking(nums, used);
                path.pop_back();
                used[i] = false;
            }
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 排序
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

代码随想录 | 47.全排列 II

你可能感兴趣的:(代码随想录,算法,leetcode)