在 RTC 2020 编程挑战赛春季赛中。我们还有一个获奖团队,思路新颖,开发了一款基于双人视频聊天场景的Android小游戏——“拿头玩”。在视频聊天过程中即可开启游戏。通过人脸识别算法识别转头方向,实现以“接锅”和“甩锅”为主题的玩法。目前实现了Android版本。
我们请“拿头玩”团队分享他们的开发思路与应用的功能实现:
项目介绍
《拿头玩》是一款基于双人视频聊天场景的小游戏,在视频聊天过程中即可开启游戏。通过人脸识别算法识别转头方向,实现以“接锅”和“甩锅”为主题的玩法。目前实现了Android版本。
项目初心
颈椎问题是困扰所有办公族的难题,大多数人工作中很难有机会能起身动一动,回到家里也会因为疲倦而放弃做一些颈椎康复的运动。所以我们想设计一款游戏,让大家在休息的时候可以通过游戏的形式活动颈椎,舒缓疼痛。我们选择了职场中的“甩锅”和“接锅”的场景,来作为游戏中的元素,希望能增加玩家的代入感。此外,我们还添加了截图分享模块,方便游戏进行传播。
主要功能
经过了5天的设计和开发,我们最终完成了《拿头玩》这个作品,下面来分享一下它的主要功能和其中的代码细节。
-
视频聊天模块的搭建
视频聊天模块主要是使用声网的音视频sdk,它可以快速的开发出一个基本的视频对话模块,核心代码如下:
//onCreate
val rtcEngine = RtcEngine.create(this, AppConfig.appKey,
object : IRtcEngineEventHandler() {
override fun onFirstRemoteVideoDecoded(uid: Int,width: Int,height: Int,elapsed: Int) {
setupRemoteVideo(uid)
}
}
//setup
private fun setupRemoteVideo(uid: Int) {
val remoteView = RtcEngine.CreateRendererView(baseContext)
remoteView.setZOrderMediaOverlay(true)
container.addView(remoteView)
rtcEngine.setupRemoteVideo(VideoCanvas(remoteView, VideoCanvas.RENDER_MODE_HIDDEN, uid))
}
-
视频帧数据的获取和处理
为了进行下一步的人脸识别,我们需要获取到视频帧数据,对帧数据进行预处理。在阅读声网提供的文档和demo后,我们搭建了一个简单的apm-plugin插件,通过这个插件,就可以得到视频聊天过程中的裸数据了。
首先我们创建apm-plugin-packet-processing.cpp文件,然后通过CMakeLists.txt配置编译参数:
cmake_minimum_required(VERSION 3.4.1)
add_library(
apm-plugin-packet-processing
SHARED
apm-plugin-packet-processing.cpp)
include_directories(../cpp/include) //这里需要导入sdk中的.h文件
...
target_link_libraries(
apm-plugin-packet-processing
${log-lib})
然后我们定义两个jni方法来注册和反注册裸数据的回调:
JNIEXPORT void JNICALL Java_com_zero_game_utils_frame_VideoFrameHandler_doRegisterProcessing
(JNIEnv *env, jobject obj) {
if (!rtcEngine) {
return;
} else {
agora::util::AutoPtr mediaEngine;
mediaEngine.queryInterface(rtcEngine, agora::AGORA_IID_MEDIA_ENGINE);
s_packetObserver = *new AgoraVideoFrameObserver(jvm, env, env->NewGlobalRef(obj));
mediaEngine->registerVideoFrameObserver(&s_packetObserver);
}
}
JNIEXPORT void JNICALL Java_com_zero_game_utils_frame_VideoFrameHandler_doUnregisterProcessing
(JNIEnv *env, jobject obj) {
if (!rtcEngine) {
return;
} else {
agora::util::AutoPtr mediaEngine;
mediaEngine.queryInterface(rtcEngine, agora::AGORA_IID_MEDIA_ENGINE);
s_packetObserver.release();
mediaEngine->registerVideoFrameObserver(nullptr);
}
}
agora::media::IVideoFrameObserver这个接口就是声网sdk提供的视频帧回调,只要实现它即可:
class AgoraVideoFrameObserver : public agora::media::IVideoFrameObserver {
public:
AgoraVideoFrameObserver() {
}
AgoraVideoFrameObserver(JavaVM *vm, JNIEnv *env, jobject jobj) {
//...
}
// 获取本地摄像头采集到的视频帧
virtual bool onCaptureVideoFrame(VideoFrame &videoFrame) override {
//processVideoFrame(videoFrame)
return true;
}
// 获取远端用户发送的视频帧
virtual bool onRenderVideoFrame(unsigned int uid, VideoFrame &videoFrame) override {
return true;
}
// 获取本地视频编码前的视频帧
virtual bool onPreEncodeVideoFrame(VideoFrame &videoFrame) override {
return true;
}
void release() {
//...
}
};
由于Android平台中摄像头返回的裸数据是YUV420编码,所以我们还要转换为提供给人脸识别模块的rgba格式才行,最后通过jni方法将数据传递到java层,进行后续的处理:
int width = videoFrame.width;
int height = videoFrame.height;
int index = 0;
char *rgba = new char[width * height * 4];
unsigned char *ybase = static_cast(videoFrame.yBuffer);
unsigned char *ubase = static_cast(videoFrame.uBuffer);;
unsigned char *vbase = static_cast(videoFrame.vBuffer);;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
//YYYYYYYYUUVV
u_char Y = ybase[x + y * width];
u_char U = ubase[y / 2 * width / 2 + (x / 2)];
u_char V = vbase[y / 2 * width / 2 + (x / 2)];
int r = static_cast(Y + 1.402 * (V - 128));
if (r > 255) { r = 255; } if (r < 0) { r = 0; }
int g = static_cast(Y - 0.34413 * (U - 128) - 0.71414 * (V - 128));
if (g > 255) { g = 255;} if (g < 0) { g = 0; }
int b = static_cast(Y + 1.772 * (U - 128));
if (b > 255) { b = 255; } if (b < 0) { b = 0; }
rgba[index++] = static_cast(r); //R
rgba[index++] = static_cast(g); //G
rgba[index++] = static_cast(b); //B
rgba[index++] = static_cast(255);
}
}
jbyte buf[width * height * 4];
int i = 0;
for (i = 0; i < width * height * 4; i++) {
buf[i] = rgba[i];
}
jbyteArray jarrRV = env->NewByteArray(width * height * 4);
env->SetByteArrayRegion(jarrRV, 0, width * height * 4, buf);
env->CallVoidMethod(jobj, jSendMethodId, jarrRV, width, height, videoFrame.rotation);
env->DeleteLocalRef(jarrRV);
-
人脸识别和方向检测
人脸识别主要使用的是MLKit,通过Firebase即可简单配置使用,在上一个环节中,我们把源数据通过jni传到了java层,现在我们需要将它转化成bitmap对象然后传给MLKit中提供的VisionFaceDetector。
val bitmap = Bitmap.createBitmap(color,width,height,Bitmap.Config.ARGB_8888)
//裸数据还需要进行旋转和水平翻转
val matrix = Matrix()
matrix.postRotate(rotation.toFloat())
matrix.postScale(-1.0f, 1.0f)
val rotationBitmap = Bitmap.createBitmap(bitmap, 0, 0, width, height, matrix, true)
val image = FirebaseVisionImage.fromBitmap(rotationBitmap)
val detect = FirebaseVision.getInstance().getVisionFaceDetector(highAccuracyOpts)
detect.detectInImage(image)
.addOnSuccessListener {
val leftEye = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EYE)
val rightEye = face.getLandmark(FirebaseVisionFaceLandmark.RIGHT_EYE)
val nose = face.getLandmark(FirebaseVisionFaceLandmark.NOSE_BASE)
//获取到左眼、右眼和鼻子的位置
val leftEyeNose = euclidean(leftEye,nose)//计算鼻子到左眼的距离
val rightEyeNode = euclidean(rightEye,nose)//计算鼻子到右眼的距离
val ratio = min(leftEyeNose,rightEyeNose) / max(leftEyeNose,rightEyeNose)
if (ratio > 0.7 && ratio < 1) {
//左右眼离鼻子的比例在0.7-1.0之间我们认为没有转头
FaceState.FRONT
} else {
if (rightHalfFace > leftHalfFace) {
//右边眼睛到鼻子距离大于左边的,我们认为转向了左边
FaceState.LEFT
} else {
//反之右边
FaceState.RIGHT
}
}
}
实现了转头识别后,配合上UI和动画,我们就可以使游戏中的人偶跟随我们的转头方向运动了。
-
游戏流程控制
由于游戏是在两端同时进行的,所以我们需要进行端对端的数据传递,我们采用的是声网提供的消息传输方案。通过实时传递游戏过程中的指令,对双方游戏画面进行控制,传递的指令包括:游戏开始,游戏结束,向左转头,向右转头,没有转头以及实时分数等。
//发送方
streamId = rtcEngine.createDataStream(true, true)
rtcEngine.sendStreamMessage(streamId, "left".toByteArray())
//接收方 object : IRtcEngineEventHandler
override fun onStreamMessage(uid: Int, s: Int, data: ByteArray?) {
data?.let {
val string = String(it)
when (string) {
"left" -> {
//处理游戏
}
"right"->{
//处理游戏
}
.....
}
}
尾声:未来展望
《拿头玩》这个项目是一个起点,基于它的框架,其实可以快速地添加到各种app中,形成一个额外的小游戏模块。将“接锅”“甩锅”的替换成“接优惠券”、“采集素材”等不同元素,可以扩展它的使用场景。通过提供更多有趣的包装,可以有效实现社交裂变引流。
开源链接
开源地址 : https://github.com/AgoraIO-Community/RTC-Hackathon/tree/master/SDKChallengeProject/Zero_PlayHead