rule.xml配置文件定义了我们对表进行拆分所涉及到的规则定义。我们可以灵活的对表使用不同的分片算法,或者对表使用相同的算法但具体的参数不同。
该文件里面主要有tableRule和function这两个标签。
1、tableRule 标签
id
func1
name 属性:
指定唯一的名字,用于标识不同的表规则。
rule标签:
指定对物理表中的哪一列进行拆分和使用什么路由算法。columns 指定要拆分的列名字。algorithm 使用function标签中的name属性,连接表规则和具体路由算法。
2、function标签
8
128
name属性:
指定算法的名字
class属性:
指定路由算法具体的类名字
property属性:
为具体算法需要用到的一些属性
3、常用的分片规则
3.1、枚举法
user_id
hash-int
partition-hash-int.txt
0
0
partition-hash-int.txt 配置:
10000=0
10010=1
上面columns 标识将要分片的表字段,algorithm 分片函数,其中分片函数配置中,mapFile标识配置文件名称,type默认值为0,0表示Integer,非零表示String,所有的节点配置都是从0开始,0代表节点1。
defaultNode 默认节点:小于0表示不设置默认节点,大于等于0表示设置默认节点,结点为指定的值,默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点,如果不配置默认节点(defaultNode值小于0表示不配置默认节点),碰到不识别的枚举值就会报错,like this:can't find datanode for sharding column:column_nameval:ffffffff 。
3.2、固定分片hash算法
user_id
func1
2,1
256,512
上面columns 标识将要分片的表字段,algorithm 分片函数,partitionCount 分片个数列表,partitionLength 分片范围列表。分区长度:默认为最大2^n=1024 ,即最大支持1024分区。
约束 :count,length两个数组的长度必须是一致的。1024 = sum((count[i]*length[i])). count和length两个向量的点积恒等于1024。
示例:
@Test
public void testPartition() {
// 本例的分区策略:希望将数据水平分成3份,前两份各占25%,第三份占50%。(故本例非均匀分区)
// |<---------------------1024------------------------>|
// |<----256--->|<----256--->|<----------512---------->|
// | partition0 | partition1 | partition2 |
// | 共2份,故count[0]=2 | 共1份,故count[1]=1 |
int[] count = new int[] { 2, 1 };
int[] length = new int[] { 256, 512 };
PartitionUtil pu = new PartitionUtil(count, length);
// 下面代码演示分别以offerId字段或memberId字段根据上述分区策略拆分的分配结果
int DEFAULT_STR_HEAD_LEN = 8; // cobar默认会配置为此值
long offerId = 12345;
String memberId = "qiushuo";
// 若根据offerId分配,partNo1将等于0,即按照上述分区策略,offerId为12345时将会被分配到partition0中
int partNo1 = pu.partition(offerId);
// 若根据memberId分配,partNo2将等于2,即按照上述分区策略,memberId为qiushuo时将会被分到partition2中
int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);
Assert.assertEquals(0, partNo1);
Assert.assertEquals(2, partNo2);
}
如果需要平均分配设置:平均分为4分片,partitionCount*partitionLength=1024
4
256
3.3、范围约定
user_id
rang-long
autopartition-long.txt
autopartition-long.txt文件:
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1
columns 标识将要分片的表字段,algorithm 分片函数,rang-long 函数中mapFile代表配置文件路径,所有的节点配置都是从0开始,及0代表节点1,此配置非常简单,即预先制定可能的id范围到某个分片。
3.4、求模法
user_id
mod-long
3
columns 标识将要分片的表字段,algorithm 分片函数,此种配置非常明确即根据id与count(你的结点数)进行求模预算,相比方式1,此种在批量插入时需要切换数据源,id不连续。
3.5、日期列分区法
create_time
sharding-by-date
yyyy-MM-dd
2014-01-01
10
columns 标识将要分片的表字段,algorithm 分片函数,配置中配置了开始日期,分区天数,即默认从开始日期算起,分隔10天一个分区。
3.6、通配取模
user_id
sharding-by-pattern
256
2
partition-pattern.txt
partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7
columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果不配置了默认,则默认是0即第一个结点。mapFile 配置文件路径,配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推,如果id非数字数据,则会分配在defaoultNode 默认节点。代码示例:
String idVal = "0";
Assert.assertEquals(true, 7 == autoPartition.calculate(idVal));
idVal = "45a";
Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
3.7、ASCII码求模通配
user_id
sharding-by-prefixpattern
256
5
partition-pattern.txt
partition-pattern.txt
# range start-end ,data node index
# ASCII
# 48-57=0-9
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7
columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数。mapFile 配置文件路径,配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推。
此种方式类似方式6只不过采取的是将列种获取前prefixLength位列所有ASCII码的和进行求模sum%patternValue ,获取的值,在通配范围内的分片数,
/** * ASCII编码:
* 48-57=0-9阿拉伯数字
* 64、65-90=@、A-Z
* 97-122=a-z
* */ String idVal="gf89f9a";
Assert.assertEquals(true, 0 == autoPartition.calculate(idVal));
idVal="8df99a";
Assert.assertEquals(true, 4 == autoPartition.calculate(idVal));
idVal="8dhdf99a";
Assert.assertEquals(true, 3 == autoPartition.calculate(idVal));
3.8、编程指定
user_id
sharding-by-substring
0
2
8
0
columns 标识将要分片的表字段,algorithm 分片函数,此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
例如id=05-100000002,在此配置中代表根据id中从startIndex=0开始,截取size=2位数字即05,05就是获取的分区,如果没传默认分配到defaultPartition。
3.9、字符串拆分hash解析
user_id
sharding-by-stringhash
512
2
0:2
columns 标识将要分片的表字段,algorithm 分片函数 ,函数中length代表字符串hash求模基数,count分区数,hashSlice hash预算位,即根据子字符串 hash运算,
hashSlice : 0 means str.length(), -1 means str.length()-1
/** * "2" -> (0,2)
* "1:2" -> (1,2)
* "1:" -> (1,0)
* "-1:" -> (-1,0)
* ":-1" -> (0,-1)
* ":" -> (0,0)
*/
public class PartitionByStringTest {
@Test public void test() {
PartitionByString rule = new PartitionByString();
String idVal=null;
rule.setPartitionLength("512");
rule.setPartitionCount("2");
rule.init();
rule.setHashSlice("0:2"); // idVal = "0"; // Assert.assertEquals(true, 0 == rule.calculate(idVal)); // idVal = "45a"; //Assert.assertEquals(true, 1 == rule.calculate(idVal)); //last 4
rule = new PartitionByString();
rule.setPartitionLength("512");
rule.setPartitionCount("2");
rule.init(); //last 4 characters
rule.setHashSlice("-4:0");
idVal = "aaaabbb0000";
Assert.assertEquals(true, 0 == rule.calculate(idVal));
idVal = "aaaabbb2359";
Assert.assertEquals(true, 0 == rule.calculate(idVal));
}
}
3.10、一致性hash
user_id
murmur
0
2
160
一致性hash预算有效解决了分布式数据的扩容问题,前1-9中id规则都多少存在数据扩容难题,而10规则解决了数据扩容难点。
参考:
https://www.cnblogs.com/kingsonfu/p/10627423.html