- Linux操作系统磁盘管理
CZZDg
linux运维服务器
目录一.硬盘介绍1.硬盘的物理结构2.CHS编号3.磁盘存储划分4.开机流程5.要点6.磁盘存储数据的形式二.Linux文件系统1.根文件系统2.虚拟文件系统3.真文件系统4.伪文件系统三.磁盘分区与挂载1.磁盘分区方式2.分区命令3.查看与识别命令4.格式化命令5.挂载命令四.LVM逻辑卷1.概述2.管理命令五.磁盘配额1.概述usrquota:支持对用户的磁盘配额grpquota:支持对组的磁
- 基于python django的学生选课考勤管理系统
资深码侬
Pythonpythondjango开发语言
基于pythondjango的学生选课考勤管理系统1.系统区分三个角色:学生用户、教师用户、管理员用户2.学生登录、选课、考勤、打卡等功能3.教师对课程管理、考勤管理4.管理员最高权限、对所有数据管理5.数据可视化展示6.各个详细功能具体可看截图本系统主要使用脚本生成了伪数据,存储到mysql中,并且对数据进行各种维度的统计,然后可视化图表展示。文章目录1.环境准备2.创建Django项目和应用3
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 扩散模型(Diffusion Model)简介
参考:Diffusionmodel—扩散模型-CSDN博客;由浅入深了解DiffusionModel-知乎;https://arxiv.org/abs/2308.093881.概述 扩散模型是一种生成模型。可用在视觉生成任务上,如图像超分辨率、去模糊、JPEG伪影移除、阴影移除、去雾/霾/雨等等。 扩散模型分为前向(扩散)过程和逆过程。前向过程逐步为图像增加逐像素噪声,直到图像满足高斯噪声;逆
- OpenTelemetry 实践指南:历史、架构与基本概念
m0_74823595
面试学习路线阿里巴巴架构
背景之前陆续写过一些和OpenTelemetry相关的文章:实战:如何优雅的从Skywalking切换到OpenTelemetry实战:如何编写一个OpenTelemetryExtensions从一个JDK21+OpenTelemetry不兼容的问题讲起这些内容的前提是最好有一些OpenTelemetry的背景知识,看起来就不会那么枯燥,为此这篇文章就来做一个入门科普,方便一些对OpenTelem
- Web-API-day1 DOM 文档对象模型
码哥DFS
前端javascript
获取DOM对象1.querySelector(")满足条件第一个元素2.querySelectorAll(")满足条件的元素集合返回伪数组3.了解其他方式1)getElementById2)getElementByTagname操作元素内容修改DOM文本内容1)innerText将文本内容添加/更细到任意标签位置,文本包含的标签不会被解析2)innerHTML将文本内容添加/更细到任意标签位置,文
- NumPy-随机数生成详解
GG不是gg
numpynumpy
NumPy-随机数生成详解一、随机数生成的基础:伪随机数与种子1.伪随机数的本质2.种子的设置:确保结果可复现二、常用随机数生成函数1.均匀分布随机数2.正态分布随机数3.整数随机数4.其他常用分布三、随机数生成的进阶操作1.随机排列与洗牌2.控制随机数的维度与形状四、随机数生成的应用场景1.数据增强2.蒙特卡洛模拟3.随机初始化参数五、注意事项NumPy作为Python数值计算的核心库,提供了功
- 探秘Linux进程间通信:ipcdump 工具
高慈鹃Faye
探秘Linux进程间通信:ipcdump工具IPCDump项目地址:https://gitcode.com/gh_mirrors/ip/IPCDumpipcdump是一个强大的开源工具,专门用于追踪Linux系统中的进程间通信(IPC)。这个工具涵盖了管道、FIFO、信号、Unix套接字、回环网络和伪终端等多种常见的IPC机制。无论是调试多进程应用程序还是理解系统中各个组件之间的交互方式,ipcd
- Android 10 Gnss数据流程
TinyKey
android
Android10Gnss数据流程一、LocationManager数据成员:GnssMeasurementCallbackTransport:高精度定位数据回调对象的封装,回调对象为GnssMeasurementsEvent.Callback,传递的对象为是GnssMeasurement,包含单颗GNSS卫星的原始观测值(如伪距、载波相位、多普勒频移)及计算参数(卫星ID、信号强度、时间戳等),
- Oracle应急处理:ORACLE XA 交易挂起
运维数据库oracle程序员
小亦平台会持续给大家科普一些运维过程中常见的问题解决案例,运维朋友们可以在往期文章中查看更多案例问题概述核心问题:ORACLEXA交易挂起。主要现象:数据库端dba_2pc_pending存在未决的交易CICS端日志报XID重复的错误。CICS或者应用程序报ORA-1591错误,无法获取分布式事务锁。selectlocal_tran_id, global_tran_id, st
- Unity反射机制
future1412
unity游戏引擎
反射知识点回顾编译器是一种翻译程序它用于将源语言程序翻译为目标语言程序源语言程序:某种程序设计语言写成的,比如C#、C、C++、Java等语言写的程序目标语言程序:二进制数表示的伪机器代码写的程序知识点一什么是程序集程序集是经由编译器编译得到的,供进一步编译执行的那个中间产物在WINDOWS系统中,它一般表现为后缀为·dll(库文件)或者是·exe(可执行文件)的格式说人话:程序集就是我们写的一个
- 【自动导引车领域涉及许多专业术语】
是刘彦宏吖
制造业数字化转型人工智能AGVAMR
自动导引车领域涉及许多专业术语。以下是一些核心和常见的术语及其解释:核心概念AGV:自动导引车。这是最基础的术语,指装备有自动导引装置(如电磁、光学、激光、SLAM等),能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车。AMR:自主移动机器人。新一代的AGV,强调更强的自主性、灵活性和智能。与依赖固定路径的传统AGV不同,AMR通常使用SLAM技术构建环境地图,并能自主规划最优路径、
- 【大数据入门核心技术-DolphinScheduler】(二)DolphinScheduler安装部署-集群模式
forest_long
大数据技术入门到21天通关大数据sparkhivehadoop交互flinkmapreduce
目录一、部署模式1、单机模式2、伪集群模式3、集群模式二、部署安装1、下载2、创建mysql元数据库3、配置一键部署脚本4、初始化数据库5、一键部署DolphinScheduler6、访问DolphinSchedulerUI三、启停命令一、部署模式DolphinScheduler支持多种部署模式,包括单机模式(Standalone)、伪集群模式(PseudoCluster)、集群模式(Cluste
- 并发编程原理与实战(七)详解并发协同利器CyclicBarrier
帧栈
Java并发编程java
并发编程原理与实战(一)精准理解线程的创建和停止并发编程原理与实战(二)Thread类关键API详解并发编程原理与实战(三)一步步剖析线程返回值并发编程原理与实战(四)经典并发协同方式synchronized与wait+notify详解并发编程原理与实战(五)经典并发协同方式伪唤醒与加锁失效原理揭秘并发编程原理与实战(六)详解并发协同利器CountDownLatch上一篇文章讲解了CountDow
- [科普]UART、RS232、RS422、RS485、TTL:深入解析串行通信家族
极客不孤独
单片机嵌入式硬件
UART、RS232、RS422、RS485、TTL:深入解析串行通信家族串行通信是电子世界的无声桥梁,但面对UART、TTL、RS232、RS422、RS485这些术语,很多人感到困惑。本文将深入解析它们的核心区别,助你精准选择通信方案。文章目录UART、RS232、RS422、RS485、TTL:深入解析串行通信家族**一、核心概念分层:协议、逻辑与物理****二、核心区别总结表****三、关
- 字节跳动 C++ QT PC客户端面试
十年编程老舅
QT开发c++qt面试qt面试题qt八股文qt面经c++八股文
字节跳动C++QtPC客户端面试,总共三轮技术面(一面10道、二面20道、三面20道)为了帮助更多的同学拿到满意的offer,我把一二三面共50道面试题整理发布出来~供大家学习参考~很多同学认为,面试问理论知识,就是八股文,实际工作中没有太大用处。但事实上,所谓的“八股文”,本质是经过提炼和标准化的专业术语和通用认知体系,它是我们高效沟通、协作和解决问题的基础。换句话说,掌握并能准确使用这些“八股
- spark处理kafka的用户行为数据写入hive
月光一族吖
sparkkafkahive
在CentOS上部署Hadoop(Hadoop3.4.1)和Hive(Hive3.1.2)的详细步骤说明。这份指南面向单机安装(伪集群模式),如果需要搭建真正的多节点集群,各节点间的网络互访、SSH免密登录以及配置同步需进一步调整。注意:本指南假设你已拥有root权限或者具有sudo权限,并且系统连接Internet(用于下载安装包)。步骤中的版本号可根据实际需要进行更改。一、环境准备更新系统软件
- 基于python的语音识别系统,Python语音识别技术路线
快乐的小肥熊
ai智能写作python语音识别开发语言cnn
如何用python调用百度语音识别1、首先需要打开百度AI语音系统,开始编写代码,如图所示,编写好回车。2、然后接下来再试一下的音频,开始编写成功回车,如图所示的编写。3、最后,查看音频c的属性,可以看到音频持续28秒,这样就是用python调用百度语音识别成功解决问题。谷歌人工智能写作项目:神经网络伪原创Python语音识别,调用的是哪个客户端接口函数调用腾讯云的语音识别(一句话识别)接口-Py
- 20161210计算机科学导论05_操作系统
蒲公英24
Po计算机科学操作系统
操作系统运行环境:包含两个东西1:操作系统2:硬件(包含了所用的东西,软件对硬件的要求)操作系统:(windows,linux,mac)(每个系统都有提供自己的API)(操作系统就是在硬件上加的一层壳)克服了硬件差异:以前的程序可能只能在一种甚至一台电脑上运行提供统一的接口:调用简单的API就可以实现需要的功能伪跨平台:源代码:跨平台会学到,原码不变,可在多种系统下运行。交叉编译:windows下
- 阿里云宝塔面板安装详细教程
vpssf
Linux运维教程企业运维教程宝塔面板教程运维数据库
下面稍微介绍一下如何使用阿里云服务器安装宝塔面板。概述如果还有不了解宝塔面板怎么使用的小伙伴,可以看下我总结的系列教程,保证从新手变老鸟:【建站流程科普】个人和企业搭建网站基本流程及六个主要步骤常见的VPS主机运维面板汇总—网站运维面板云服务器,VPS,虚拟主机有什么不同?如何选择?【宝塔面板精选教程汇总】宝塔面板教程(1)基于云服务器搭建宝塔面板教程最全详解宝塔面板教程(2)宝塔面板添加Word
- 从6个维度学会提示词(prompt)编写
Ai小丸+
promptAIGC人工智能ai语言模型AI编程自然语言处理
这份提示词编写指南从6个维度、5000字详解,手把手教你搭好智能体提示词。最后附上Markdown格式小贴士,帮你轻松上手!若本文章对您有帮助,点个赞支持下,关注我持续了解更多AI内容!一、提示词编写内容指南1、角色设定1.1、为什么需要精准角色定位?认知锚定:明确的角色设定让AI快速理解“该以什么身份说话”,避免输出风格混乱(如:让医生用rapper语气写科普文)专业背书:通过职业年限、领域成就
- AI产品经理技术篇:AI领域常用术语解析
让我看看好学吗
人工智能产品经理机器学习深度学习学习
作为AI产品经理,深入理解人工智能领域的核心术语是高效沟通、需求定义和产品落地的关键。无论是与算法工程师协作优化模型,还是向业务方解释技术方案,准确掌握专业术语能显著提升决策效率,避免因概念混淆导致的开发偏差。本文系统梳理了模型与算法、NLP(自然语言处理)、CV(计算机视觉)、数据处理、核心评估指标等领域的核心术语,帮助产品经理快速构建AI技术认知框架。目录1.基础概念2.模型与算法3.自然语言
- AI 时代下,普通人不能错过的五大变现机会
Jasonakeke
AI人工智能大数据
AI时代下,普通人不能错过的五大变现机会关键词:轻资产低门槛强需求机会1:知识付费——借“AI”做知识博主核心逻辑:AI降低知识生产门槛AI这个领域有巨大的科普红利和流量红利操作步骤:定位细分领域用AI工具快速生成内容选择平台机会2:AI自媒体——流量即现金变现模式:自媒体商单广告分成带货私域转化核心逻辑:目前AI存在巨大的科普红利和流量红利+AI能够提升创作效率爆款公式:选题:AI工具测评+具体
- NUMA 架构科普:双路 CPU 系统是如何构建的?
NUMA(Non-UniformMemoryAccess,非一致性内存访问)是一种用于多处理器系统的内存架构设计,主要应用于服务器、工作站和高性能计算(HPC)领域。它的核心特点是不同CPU访问不同内存区域的速度不一致,这与传统的UMA(UniformMemoryAccess,一致性内存访问)架构不同。1.NUMA的物理结构(1)双路CPU系统的硬件组成在典型的双路(2P)服务器主板上,会有:2颗
- 【随机数真的是随机数吗?】
¥-oriented
其他
在计算机科学中,随机数是一个非常有趣且复杂的话题。我们常常在各种应用程序中看到随机数的应用,比如游戏、加密、统计模拟等。然而,许多人可能并不清楚计算机生成的随机数到底有多“随机”。本文将详细解释程序中的随机数,探讨其生成机制以及不同类型的随机数。伪随机数与真随机数首先,我们需要明确两个关键概念:伪随机数和真随机数。伪随机数(PseudorandomNumbers):伪随机数是由计算机算法生成的数字
- CppCon 2018 学习:A Little Order! Delving into the STL sorting algorithms
虾球xz
CppCon学习c++排序算法
记录一下一个编译器加密的算法#include#include#include#include#include#include#includenamespacedetail{//编译期伪随机key:每个字符对应不同keytemplateconstexprstd::uint8_tkey8(){returnstatic_cast((N*31+57)^0xAA);}}//namespacedetail//
- 科普语音交互所需开源技术方案
以下是ASR(自动语音识别)、LLM(大语言模型)和TTS(文本转语音)三者结合的应用场景及开源方案:一、应用场景智能语音助手如百聆(Bailing),支持语音输入、意图理解、任务管理及语音输出,端到端延迟仅800ms,支持打断和记忆功能。车载语音交互系统(如蔚来、小鹏),结合ASR识别指令、LLM处理复杂查询(如"找有充电桩的高评分餐厅")和TTS提供语音反馈。语音到语音翻译(S2ST)阿里Fu
- Swift 小技巧:用单边区间优雅处理模糊范围
狼_夏天
SwiftTipsswift开发语言ios
进入正题之前先科普一下Swift区间的知识。Swift中的区间有两种类型:闭区间和半开区间。闭区间:用a...b表示,包含a和b。半开区间:用a..=0&&number=2.0&&score=3.5&&score<=5.0{print("好评")}else{print("评分超出范围")}3.用单边区间优雅处理letscore=4.2guard(0.0...5.0).contains(score)
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 35岁被优化,想转行AI?华为HCIE-AI是“救命稻草”还是“天坑”?
博睿谷IT99_
人工智能华为华为认证职业规划
粉丝宝宝私信我:“姐,我今年35了,真卡在这个尴尬的年龄点上。屋漏偏逢连夜雨,公司最近人员调整,我...被优化了。对这个行业真的心灰意冷,想彻底转行。看网上华为AI认证的风刮得特别大,什么HCIE-AI听起来就很牛,说是大神级别?我这把年纪了,0基础转过去,这玩意儿到底靠不靠谱?值不值得我allin去考啊?求真实科普!”看到这条私信,心里挺不是滋味。35岁遭遇职业转折,迷茫和压力可想而知。关于华为
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key