数据分析基础之《pandas(8)—综合案例》

一、需求

1、现在我们有一组从2006年到2016年1000部最流行的电影数据
数据来源:https://www.kaggle.com/damianpanek/sunday-eda/data

2、问题1
想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?

3、问题2
对于这一组电影数据,如果我们想看Rating、Runtime (Minutes)的分布情况,应该如何呈现数据?

4、问题3
对于这一组电影数据,如果我们希望统计电影分类genre的情况,应该如何处理数据?

二、实现

1、问题1

# 综合案例
movie= pd.read_csv("./IMDB-Movie-Data.csv")

movie

# 想知道这些电影数据中评分的平均分,导演的人数等信息,我们应该怎么获取?
# 评分的平均分
movie["Rating"].mean()

# 导演的人数信息
np.unique(movie["Director"]).size

数据分析基础之《pandas(8)—综合案例》_第1张图片

2、问题2

# 对于这一组电影数据,如果我们想看Rating、Runtime (Minutes)的分布情况,应该如何呈现数据?
import matplotlib.pyplot as plt

# 创建画布
plt.figure(figsize=(20,8), dpi=100)

# 绘制直方图
plt.hist(movie["Rating"], 20)

# 修改刻度
max_ = movie["Rating"].max()
min_ = movie["Rating"].min()
plt.xticks(np.linspace(max_, min_, num=21))

# 添加网格
plt.grid(linestyle="--", alpha=0.8)

# 显示图像
plt.show()

数据分析基础之《pandas(8)—综合案例》_第2张图片

3、问题3
思路分析:
(1)创建一个temp_df,全为0的dataframe,列索引值为电影的分类
(2)遍历每一部电影,temp_df中把分类出现的列的值置为1
(3)求和

# 对于这一组电影数据,如果我们希望统计电影分类genre的情况,应该如何处理数据?
# 先统计电影类别都有哪些
movie_genre = [i.split(",") for i in movie["Genre"]]

movie_genre

# 拆分
movie_class = np.unique([j for i in movie_genre for j in i])

movie_class

# 统计每个电影有几个类别
count = pd.DataFrame(np.zeros(shape=[1000, 20], dtype="int32"), columns=movie_class)

count

for i in range(1000):
    count.loc[i, movie_genre[i]] = 1

count

count.sum(axis=0).sort_values(ascending=False).plot(kind="bar", figsize=(20, 8), fontsize=20, colormap="cool")

数据分析基础之《pandas(8)—综合案例》_第3张图片

三、小结
pandas高级数据处理
    缺失值处理
        缺失值是NaN类型
            判断是否存在np.nan缺失值
                pd.isnull(df).any()
                pd.notnull(df).all()
            两种思路
                删除df.dropna()
                替换sr.fillna(value, replace=)
        缺失值是其他默认符号
            替换df.replace(to_replace="?", value=np.nan)
            按照处理nan的步骤
    数据离散化
        分组
            自动分组pd.qcut(data, bins)
            自定义分组pd.cut(data, bins)
        转换
            pd.get_dummies(分好组的数据, prefix=)
    数据合并
        按方向合并
            pd.concat((a,b), axis=)
        按索引合并
            pd.merge(left, right, how="inner", on=)
    交叉表与透视表
        pd.crosstab(value1, value2)
        df.pivot_table([字段], index=)
    分组与聚合
        用dataframe.groupby(by=).聚合函数()
        用sr.groupby(sr).聚合函数()
 

你可能感兴趣的:(机器学习,数据分析)