- 聚焦的伟力:注意力机制与Transformer的创世纪
田园Coder
人工智能科普人工智能科普
当LSTM和GRU凭借其精密的门控系统,成功驯服了时间的长河,让神经网络能够跨越数十甚至数百步记住关键信息,并在机器翻译、文本生成等领域大放异彩时,一个看似微小却影响深远的瓶颈逐渐浮出水面,尤其是在序列到序列(Seq2Seq)框架中。在标准的Seq2Seq模型(如用于神经机器翻译)里,编码器(通常是一个RNN如LSTM)需要将整个输入序列(如一个英语句子)的信息压缩成一个固定长度的上下文向量(Co
- 目前在台式计算机上最常用的I O总线是,智慧职教: 目前在台式计算机上最常用的I/O总线是 。...
weixin_39890708
目前在台式计算机上最常用的IO总线是
智慧职教:目前在台式计算机上最常用的I/O总线是。更多相关问题Ourcountrybecomes____________.[]A.richandricherB.richandrichC.richerandricher按要求写句子。1.Mysisteris1.6metrestall.I'm1.3metrestall.(用than将句子合并)Mysisteris_Aplaneis___________
- PPT制作中,如何避免文字过多
小马哥编程
powerpointppt
在PPT制作中,避免文字过多是提升视觉效果和信息传递效率的关键。以下是具体策略及操作建议,结合内容设计与排版技巧,帮助你打造更简洁直观的演示文稿:一、内容设计:从源头精简文字1.提炼核心信息,拒绝“逐句复制”用关键词代替句子:将段落拆分为核心短语或关键词,例如把“本次市场调研主要分析了消费者对产品价格的敏感度及购买渠道偏好”改为“市场调研:价格敏感度|购买渠道”。遵循“6×6原则”:单页文字不超过
- 编译原理复习题
钻仰弥坚
编译原理编译原理复习题期末
选择一套期末试卷作为编译原理的复习题,答案写的比较简单,仅供参考。一、选择题(20分)1、构造编译程序应掌握_______。A、源程序B、目标语言C、编译方法D、以上三项都是2、用高级语言编写的程序经编译后产生的程序叫_________。A、源程序B、目标程序C、连接程序D、解释程序3、文法G产生的_______的全体是该文法描述的语言。A、句型B、终结符集C、非终结符集D、句子4、文法分为四种类
- 学习日志03 python
im_AMBER
学习
继续加油,计算器小项目还没学会!1num1=float(input("请输入第一个数字:"))//其实我觉得python里面这种句子很奇怪,因为java里面要先printf这个中文,然后再读取输入的在Python中,input()函数确实会直接显示提示信息并等待用户输入,这与Java的处理方式有所不同。Java通常需要先使用System.out.print()输出提示,再用Scanner读取输入。
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- The greater the population there is in a locality, the greater the need there is for water...
千楼
英语分享职场和发展
句子分析:Thegreaterthepopulationthereisinalocality,thegreatertheneedthereisforwater,transportation,anddisposalofrefuse.一、句子结构解析句子类型:这是一个比较状语从句,使用了**“the+比较级…,the+比较级…”**的固定句型,表示“越……,越……”。结构拆分:前半部分(条件):The
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- LGTM?Github中那些迷之缩写
SunTecTec
github
PR:PullRequest.拉取请求,给其他项目提交代码LGTM:LooksGoodToMe.朕知道了代码已经过review,可以合并SGTM:SoundsGoodToMe.和上面那句意思差不多,也是已经通过了review的意思WIP:WorkInProgress.传说中提PR的最佳实践是,如果你有个改动很大的PR,可以在写了一部分的情况下先提交,但是在标题里写上WIP,以告诉项目维护者这个功能
- RNN循环神经网络原理解读
zhishidi
ai笔记rnn人工智能深度学习
我们把循环神经网络想象成一个有记忆的助手,特别擅长处理按顺序出现的信息,比如句子、语音、股票价格、音乐旋律等。核心思想:记住过去的信息,帮助理解现在。普通神经网络的局限(没有记忆)想象一个普通的神经网络(比如用于识别图片的):输入:你给它一张图片。处理:它分析这张图片的像素。输出:告诉你图片里是“猫”还是“狗”。问题:它每次只看一个独立的输入(一张图片),输入之间没有联系。给它看一个视频(连续很多
- 燕山大学编译原理期末考试
能运行就算成功
经验分享
软件工程专业的首先,这一门课无法在三四天内速成(指零基础的)要是有考前才开始学到同学至少要提前一周开始学习(我觉得这都比较紧张,两周才算宽裕),b站上的速成课不全!不全!不全!不要想着完全看速成课,你要非这样我也没办法。考试范围如下:编译程序构成、编译程序与解释程序区别,词法分析、语法分折、语义分折及其任务,文法,语言,句型,句子,短语,推导,归约,句柄,文法、语言二义性,文法分类,有穷自动机、正
- 从CoNLL-U格式文件读取文本的实战指南
yunwu12777
langchain交互深度学习
在自然语言处理任务中,使用标准化的文本格式能够显著简化数据处理工作。CoNLL-U格式就是这样一种被广泛应用的文本格式,它是CoNLL-X格式的修订版,主要用于句法分析和词法标注任务。技术背景介绍CoNLL-U格式的文件是纯文本文件,采用UTF-8编码,文本内容包括三类行:词行:每个行代表一个词或标记,包含10个字段,用单个制表符分隔。空行:用于表示句子边界。注释行:以哈希符号(#)开头,用于附加
- 6月19日复盘
四万二千
人工智能transformer
6月19日复盘二、分词与词向量分词和词向量是NLP的基础技术。1.分词分词是将连续的文本分割成独立的词汇单元(tokens)的过程。这些单元可以是单词、符号或子词。1.1中文特性中文句子由连续的汉字组成,没有明显的词边界:词与词之间没有分隔符英文:Ilovenaturallanguageprocessing.中文:我喜欢自然语言处理。词是最基本的语义单元。为了处理文本信息,须将连续的序列分割成有意
- 文本表示的发展概述
抱抱宝
大模型自然语言处理
文本表示的目的是将人类语言的自然形式转化为计算机可以处理的形式,也就是将文本数据数字化,使计算机能够对文本进行有效的分析和处理。文本表示是NLP领域中的一项基础性和必要性工作,它直接影响甚至决定着NLP系统的质量和性能。在NLP中,文本表示涉及到将文本中的语言单位(如字、词、短语、句子等)以及它们之间的关系和结构信息转换为计算机能够理解和操作的形式,例如向量、矩阵或其他数据结构。这样的表示不仅需要
- 大模型Prompt Engineer面试题及参考答案
大模型大数据攻城狮
promptLangChainpython面经工作流扣子difynlp
什么是Few-shotPrompting?与Zero-shot、One-shot有什么区别?Few-shotPrompting是一种提示工程技术,指在向模型提出问题时,同时提供少量的示例作为参考,让模型通过这些示例理解任务要求并生成相应输出。比如询问模型“将以下句子翻译成法语”时,先给出“Hello->Bonjour”“Thankyou->Merci”这样的几个例子,再提供需要翻译的句子,模型就能
- 掌机主机杂志2025年整理(200GB)PDF格式
3DS专辑-1~9DreamcastMagazine(JPN)GAMEBOY权威读本p4g攻略PS2专辑PS3专辑PSP专辑标准掌机典藏电子游戏软件(全集)电子游戏与电脑游戏游戏机实用技术掌机王NS掌机迷-1~141掌机王plus-1~9掌机王sp-1~242动物之森攻略整合精灵宝可梦Let'sGo!皮卡丘伊布塞尔达传说旷野之息中文版完全攻略本官方超清矢量版夸克网盘分享
- DvaJS学习(dva = React-Router + Redux + Redux-saga)
Free Joe
React
我们来介绍一下,dva出自于暴雪出品的一款游戏《守望先锋》,援引官方的角色介绍:D.Va拥有一部强大的机甲,它具有两台全自动的近距离聚变机炮、可以使机甲飞跃敌人或障碍物的推进器、还有可以抵御来自正面的远程攻击的防御矩阵。然后呢,蚂蚁金服的一位架构师sorrycc很迷这位美女,正巧刚开发了一款前端框架没有名字,作为一个向女神献礼的项目,dva框架就此诞生。我们先看看React没有解决的问题React
- Transformer结构介绍
大写-凌祁
transformer深度学习人工智能
[编码器Encoder]←→[解码器Decoder]编码器:输入:源语言序列输出:每个词的上下文表示(embedding)解码器:输入:目标语言序列+编码器输出输出:下一个词的概率分布(目标句子生成)inputs->inputsEmbedding+PositionalEncoding->N*encoderoutput->outputsEmbedding+PositionalEncoding->N*
- 【狂飙AGI】第6课:前沿技术-文生图(系列2)
LeeZhao@
狂飙AGI系列agi自然语言处理人工智能AIGCembedding
目录(一)美学理论(8)错时空美学(9)无厘头美学(10)迷融汇美学(11)大撕裂美学(12)乱混沌美学(13)寂幻流美学(14)越极限美学(二)AIGC作品展(三)AI自动化工作流(一)美学理论(8)错时空美学(9)无厘头美学(10)迷融汇美学(11)大撕裂美学(12)乱混沌美学(13)寂幻流美学(14)越极限美学(二)AIGC作品展(三)AI自动化工作流参考资料:【狂飙AGI】第5课:前沿技术
- 自然语言处理文本分类
愚者大大
NLP自然语言处理分类人工智能
一、文本分类基础定义:将文本文档或句子分类到预定义类别,包括单标签多类别(如新闻分娱乐/体育)和多标签多类别(如文档同时属“相机”“芯片”类)。基准公开数据集|Dataset|Type|Labels|Size(train/test)|Avg.length||---------|------|--------|------------------|-------------||SST|情感|5/2|
- 如何使用递归字符文本分割器进行文本分割
在文本处理中,分割文本是一项常见的任务,尤其在处理大段文本时,我们需要将其分割成更小的部分,以便进一步分析或处理。本文将通过一个简单易懂的示例展示如何使用递归字符文本分割器来实现这一目标。该分割器通过参数化字符列表来分割文本,默认列表为["\n\n","\n","",""],这些字符有助于尽量保持段落、句子和词语的完整性。技术背景介绍在自然语言处理中,理解文本的结构和语义关系至关重要。递归字符文本
- Transformer为何强大?揭秘多头注意力的核心机制
和老莫一起学AI
transformer深度学习人工智能大模型程序员转行ai
注意力机制首先简单回顾一下transformer的流程。我们有一句话我是秦始皇。这个内容会首先进行token分词,然后映射为tokenid,接着我们会对token_id进行词嵌入,得到然后加入位置编码,得到X。整个步骤如下:Tokenization:将句子分割成token,["我","是","秦始皇"]。TokentoID:将token映射为数字ID,[259,372,5892]。Embeddin
- 深度学习聊天机器人 需要考虑
MYH516
深度学习机器人人工智能
要让深度学习聊天机器人表现更优,需从多维度综合优化,以下从数据、模型架构、训练策略、评估及工程落地等方面展开分析:一、数据层面:质量与多样性是核心1.数据规模与多样性多场景覆盖:覆盖日常对话、专业领域(如医疗、客服)、情感交流等场景,避免数据集中在单一话题(如仅闲聊)。多轮对话结构:包含上下文连贯的多轮对话数据(如用户追问、话题跳转),而非孤立的单轮句子,让模型学习对话逻辑。负样本构建:加入不相关
- 智能工厂的设计软件 之 语言设计 之 一个通用的信息系统的架构以及其构建基础 之1
一水鉴天
智能制造软件智能中台人工智能架构
Q1、今天我们继续“智能工厂的设计软件”的“程序”语言设计。回顾-昨天将“程序”所指的software,application,source视为程序语言三种方言,具有固定的语法句子(简化后的):PrivateBehavior((()))(τ,δ,λ);PublicRule{{{}}}(Atom,Term,Formula);ProtectedStructure[[[]](actor,element,
- 机器学习中的正则化(Regularization)详解
DuHz
机器学习人工智能信息与通信概率论信号处理
机器学习中的正则化(Regularization)详解正则化的本质:为什么需要它?想象一下,你正在学习一门新的语言,如果你把遇到的每一个句子都完全背诵下来,你可能在重复那些句子时表现完美,但面对新的句子时却束手无策。这就是机器学习中"过拟合"的本质。正则化就像是告诉模型"不要记住每个细节,而要学会概括规律"的一种机制。从数学角度看,正则化通过在原始损失函数中添加一个惩罚项来实现这个目标。标准的正则
- 基于深度学习的文本摘要
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的文本摘要技术利用深度学习模型从大量文本中提取关键信息,并生成简洁的摘要。这项技术在新闻摘要、文档概要、研究报告、法律文件等领域有广泛应用。以下是对这一领域的系统介绍:1.任务和目标文本摘要的主要任务和目标包括:抽取式摘要:从原始文本中提取最重要的句子或段落,生成摘要。生成式摘要:生成与原文意义相似但表达更简洁的文本。混合式摘要:结合抽取和生成两种方法,生成高质量的摘要。2.技术和方法
- 解释器模式(Interpreter Pattern)
lpfasd123
深入解读软件设计模式解释器模式java设计模式
解释器模式(InterpreterPattern)是一种行为型设计模式,它定义了一个语言的文法表示,并定义一个解释器用来处理该语言中的句子。这种模式常用于解析表达式或特定领域语言(DSL,Domain-SpecificLanguage),比如数学表达式、正则表达式、SQL语句等。体现的设计原则单一职责原则:每个解释器类只负责解释一种语法结构,从而简化了每个类的职责。开闭原则:可以在不修改现有代码的
- non-autoregressive sequence generation
D11PMINDER
deeplearning深度学习自然语言处理人工智能
非自回归non-autoregressive传统rnn是autoregressive,而且encode和decode都是根据上一个input/output,这样花费的时间就和句子长度成正比transformer的输入是并行的,但是decode阶段还是autoregressive单纯把影像当成N×M个独立像素去拟合,会缺乏像素之间的依赖,也无法产生多样化样本,就是普通的network无法学到多样化样
- BERT
D11PMINDER
deeplearningbert人工智能深度学习
BERT简介BERT,全称是“双向编码器表示来自变换器”(BidirectionalEncoderRepresentationsfromTransformers),听起来可能有点复杂,但其实它就像一个超级聪明的“阅读理解机器”。想象你读一篇文章,想理解某个词的意思,不仅看它前面的句子,还要看后面的内容,BERT就是这样工作的。它能同时考虑一个词的前后上下文,这样理解得更准确。BERT是基于Tran
- python打卡第46天
zdy1263574688
python打卡python深度学习人工智能
一、什么是注意力机制?注意力机制(AttentionMechanism)的核心思想是模拟人类的认知过程:让模型学会“有选择地聚焦”输入信息中的关键部分,同时抑制次要或无关信息。就像人眼观察图片时,会自然忽略背景而聚焦于主体(如一只猫或一辆汽车)。在Transformer中:被称为自注意力(Self-Attention)。它允许序列(如句子中的词、图像中的区域)中的每个元素“查看”序列中的所有其他元
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/