- CVPR‘24开源 | ADA-Track:端到端3D多目标跟踪最新SOTA!
计算机视觉工坊
3D视觉从入门到精通3d目标跟踪人工智能
编辑:计算机视觉工坊添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3DGS系列、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
- 词表设计:特殊Token区域与共享去区域的深入探讨
东方佑
开发语言
在自然语言处理(NLP)中,Tokenizer的设计对于模型性能有着至关重要的影响。Tokenizer不仅决定了文本如何被分割成更小的单位(即token),还决定了这些token如何被映射到模型可以理解的形式。本文将详细探讨一种特殊的Tokenizer设计方法——特殊Token区域与共享去区域的设计理念,并介绍其应用场景和实现方式。特殊Token区域概述特殊Token区域通常包括一些特定的标识符,
- Python语言的安全开发
慕璃嫣
包罗万象golang开发语言后端
Python语言的安全开发引言在信息技术迅速发展的今天,网络安全问题愈发凸显。随着Python语言的广泛应用,尤其是在数据分析、人工智能、Web开发等领域,其安全问题越来越受到重视。Python作为一门高效且易于学习的编程语言,虽然在开发过程中为我们提供了很多便利,但如果忽视了安全性,将可能导致严重的安全漏洞和数据泄露等问题。因此,本文将围绕Python语言的安全开发展开讨论,重点分析常见的安全问
- 知识图谱与大语言模型:构建智能问答系统
AGI大模型与大数据研究院
大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍在当今的信息时代,数据的获取和处理已经成为了我们生活中不可或缺的一部分。然而,随着数据量的爆炸性增长,如何从海量的数据中提取有用的信息,进而为用户提供精准的服务,已经成为了一个重要的研究课题。在这个背景下,知识图谱和大语言模型应运而生,它们通过对数据的深度挖掘和智能处理,为构建智能问答系统提供了可能。2.核心概念与联系2.1知识图谱知识图谱是一种新型的数据结构,它以图的形式表示实体之间
- Deepseek技术浅析(一)
爱研究的小牛
AIGC—概述大模型AIGC人工智能深度学习自然语言处理
DeepSeek是北京深度求索人工智能基础技术研究有限公司推出的人工智能技术品牌,专注于大语言模型(LLM)的研发与应用。其技术涵盖了从模型架构、训练方法到应用部署的多个层面,展现出强大的创新能力和应用潜力。以下将详细介绍DeepSeek的核心技术、工作原理以及具体实现方式。一、核心技术1.大语言模型(LLM)DeepSeek的核心产品是自研的大语言模型,其主要特点包括:(1)基于Transfor
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 启元世界(Inspir.ai)技术浅析(一)
爱研究的小牛
AIGC—游戏制作人工智能机器学习AIGC深度学习
启元世界(Inspir.ai)作为全球领先的通用人工智能平台公司,自2017年成立以来,一直致力于通过人工智能技术提升产业效能和生活体验。公司汇聚了来自全球顶尖公司和高等学府的技术专家,专注于深度强化学习、推荐算法以及机器学习系统平台等前沿领域,并成功将人工智能技术应用于数字娱乐、智能决策和机器人等多个领域。一、核心技术启元世界在人工智能领域取得了多项突破性进展,其核心技术涵盖了以下几个方面:1.
- Lumen5——AI视频制作,提取关键信息生成带有视觉效果的视频
爱研究的小牛
AIGC—视频人工智能AIGC深度学习
一、Lumen5介绍Lumen5是一款基于人工智能的自动化视频制作平台,专为非专业用户设计,帮助其将博客、文章、新闻等文字内容快速转换为视频。Lumen5的目标是简化视频制作流程,让内容创作者、市场营销人员、社交媒体团队等无需视频制作经验即可轻松制作吸引观众的高质量视频。二、Lumen5的主要功能文字转视频Lumen5最具特色的功能是通过AI自动将文本转化为视频。用户可以输入一段文字或直接粘贴文章
- python神经网络框架有哪些,python调用神经网络模型
小明技术分享
python神经网络深度学习
人工智能Python深度学习库有哪些由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:第一:CaffeCaffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与S
- OpenCV中的图像处理函数详解
Luzem0319
opencv图像处理人工智能
在OpenCV中,图像处理函数是实现图像处理和计算机视觉任务的基础。下面将详细介绍六个重要的图像处理函数:二值化函数、自适应二值化函数、腐蚀函数、膨胀函数、仿射变换函数和透视变换函数。一、二值化函数功能二值化函数(cv2.threshold())用于将灰度图像转换为二值图像。二值图像中,每个像素只有两种可能的值(通常是0和255),分别代表黑色和白色。参数src:输入图像,应为灰度图像。thres
- OpenCV中的边缘检测和轮廓处理
Luzem0319
opencv人工智能计算机视觉
在图像处理和计算机视觉任务中,边缘检测和轮廓处理是非常重要的步骤。OpenCV库提供了多种函数来实现这些功能,包括Sobel算子、Laplacian算子、Canny算子、findContours函数、drawContours函数以及透视变换函数等。本文将详细介绍这些函数的功能、参数、返回值和应用。1.Sobel算子函数功能:Sobel算子用于计算图像灰度的近似梯度,梯度越大越有可能是边缘。参数:s
- 人工智能的前景与未来就业市场:机遇、挑战与社会影响
苹果酱0567
面试题汇总与解析java开发语言中间件springboot后端
随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面,它不仅引领着技术革新的浪潮,更在无声中重塑着我们的就业市场和社会结构。站在这个时代的交汇点上,我们不禁要问:人工智能将如何影响我们的未来就业市场?它带来的究竟是机遇还是挑战?回望过去,每一次科技革命都伴随着就业市场的剧烈震荡。而今,人工智能作为第四次工业革命的核心驱动力,正以前所未有的速度改变着劳动力市场的格局。从自动化生产线上
- 探索SakuraLLM:轻小说与Galgame翻译的新纪元
蒋素萍Marilyn
探索SakuraLLM:轻小说与Galgame翻译的新纪元SakuraLLM适配轻小说/Galgame的日中翻译大模型项目地址:https://gitcode.com/gh_mirrors/sa/SakuraLLM在人工智能的浪潮中,SakuraLLM以其独特的魅力和强大的功能,成为了日中翻译领域的一颗璀璨明星。本文将深入介绍SakuraLLM项目,分析其技术特点,探讨其应用场景,并揭示其与众不同
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- AI学习指南Ollama篇-Ollama的多模态应用探索
俞兆鹏
AI学习指南ai
AI学习指南应用篇-Ollama的多模态应用探索一、引言(一)背景介绍随着大语言模型(LLM)的发展,多模态应用(结合文本、图像、语音等)成为新的趋势。多模态模型能够处理多种类型的数据,如文本、图像和语音,从而提供更丰富、更智能的交互体验。Ollama作为本地部署工具,支持多模态模型的运行,为开发者提供了强大的功能。(二)文章目标本文将探讨Ollama在多模态应用中的可能性,并通过实际案例展示如何
- SpringBoot中运行Yolov5程序
eqa11
springbootYOLO后端
文章目录SpringBoot中运行Yolov5程序一、引言二、环境搭建1、SpringBoot项目创建2、YOLOv5环境配置三、SpringBoot与YOLOv5集成1、创建Python服务2、SpringBoot调用Python服务四、使用示例1、创建控制器五、总结SpringBoot中运行Yolov5程序一、引言在人工智能领域,目标检测是一个热门且实用的技术。YOLOv5作为目标检测算法中的
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 模型架构选择:从传统NLP到Transformer
AI天才研究院
AI大模型应用入门实战与进阶大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
模型架构选择:从传统NLP到Transformer关键词:自然语言处理(NLP),模型架构,传统NLP,Transformer,RNN,CNN,预训练模型文章目录模型架构选择:从传统NLP到Transformer1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1传统NLP模型3.1.2RNN模型3.1.
- 用自然语言与mysql数据库对话几种方案的思考
闲云野鹤_SG
数据库mysqlAItext2sql自然语言本地部署大模型
如何用自然语言与mysql数据库对话,而不是用sql语句去查询数据库?处于安全考虑,可训练一个本地大语言模型来完成此项任务,mysql服务器中的数据大约有两万多条记录,服务器的作用主要是记录设备的出库和回库的流水账(即以时间为序的记录),但有一些sql查询比较复杂,必须根据特定的sql语句查询,否则很难得到准确稳定的答案,调试和训练大模型的方法有多种方式,比如lora训练模型,提示词方式,rag方
- 阿里巴巴Qwen团队发布AI模型,可操控PC和手机
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/这周,科技界的目光几乎都被DeepSeek的R1模型吸引,但阿里巴巴并没有袖手旁观。1月
- 对比DeepSeek、ChatGPT和Kimi的学术写作摘要能力
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能chatgptllama数据分析论文阅读
摘要摘要是文章的精华,通常在200-250词左右。要包括研究的目的、方法、结果和结论。让AI工具作为某领域内资深的研究专家,编写摘要需要言简意赅,直接概括论文的核心,为读者提供快速了解的窗口。下面我们使用DeepSeek、ChatGPT4以及Kimi辅助编写摘要。提示词:你现在是一名[计算机理论专家],研究方向集中在[人工智能、大模型、数据挖掘等计算机相关方向]。我现在需要撰写一篇围绕[人工智能在
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 计算机视觉:解锁未来智能的钥匙及其代码实践
我的运维人生
计算机视觉人工智能运维开发技术共享
计算机视觉:解锁未来智能的钥匙及其代码实践在当今这个数据爆炸的时代,计算机视觉作为人工智能的一个重要分支,正以前所未有的速度推动着科技的边界。它不仅让机器“看懂”世界,更在自动驾驶、医疗影像分析、智能制造、安防监控等众多领域展现出巨大的应用潜力。本文将深入探讨计算机视觉的核心技术、最新进展,并通过一个具体的代码案例,展示如何在实践中应用这些技术,旨在为读者提供一个理论与实践相结合的全面视角。一、计
- ImportError: DLL load failed while importing _rust: 找不到指定的程序的解决方案
爱编程的喵喵
Python基础课程pythonImportErrorDLLloadfailed_rust解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:DLLloa
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- 小南每日 AI 资讯 | 国产AI之光DeepSeek暴击硅谷??? | 25/01/29
小南AI学院
人工智能
1.中国AI模型震惊硅谷:DeepSeek为何一夜火出圈?国产AI大模型DeepSeek迅速崛起,引发硅谷关注。2.中国银行支持AI产业:1万亿元金融扶持助推智能化升级中国银行宣布提供1万亿元资金支持人工智能产业链发展,助力智能化升级。3.国产AI大模型DeepSeek惊艳全球:游戏科学冯骥称其为“国运级别科技成果”DeepSeek的AI模型引起全球关注,游戏科学的冯骥高度评价其意义。4.AI产业
- 【我的阅读】【nature |ai4science】Scientific discovery in the age of artificial intelligence【人工智能时代的科学发现】
算法研究员
【AI4Science】人工智能
相关资料:https://www.nature.com/articles/s41586-023-06221-2#Sec15文章目录Abstract摘要Conclusion结论Abstract摘要Artificialintelligence(AI)isbeingincreasinglyintegratedintoscientificdiscoverytoaugmentandaccelerateres
- 大型语言模型构建指南:从头开始构建大语言模型《Build a Large Language Model (From Scratch)》免费PDF
AGI大模型学习
语言模型pdf人工智能大模型大模型学习大模型教程大模型书籍
通过从头开始构建一个大型语言模型,了解如何创建、训练和调整大型语言模型(LLMs)!一、构建大型语言模型(从头开始)在《构建大型语言模型(从头开始)》中,你将了解如何LLMs从内到外工作。在这本富有洞察力的书中,畅销书作家塞巴斯蒂安·拉施卡(SebastianRaschka)将指导你逐步创建自己的LLM,用清晰的文字、图表和示例解释每个阶段。你将从最初的设计和创建到通用语料库的预训练,一直到特定任
- 书籍推荐:《从零构建大型语言模型》附免费PDF下载
大模型入门学习
语言模型pdf人工智能产品经理大模型学习大模型教程大模型入门
通过从头开始构建一个大型语言模型,了解如何创建、训练和调整大型语言模型(LLMs)!一、构建大型语言模型(从头开始)在《构建大型语言模型(从头开始)》中,你将了解如何LLMs从内到外工作。在这本富有洞察力的书中,畅销书作家塞巴斯蒂安·拉施卡(SebastianRaschka)将指导你逐步创建自己的LLM,用清晰的文字、图表和示例解释每个阶段。你将从最初的设计和创建到通用语料库的预训练,一直到特定任
- Hugging Face挑战DeepSeek,AI开源竞赛升级!
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/DeepSeek的R1推理模型刚刚引发全球轰动,开源AI界的“顶流”HuggingFac
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,