二分查找,也称为折半查找,是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。我们应该如何用在具体问题中呢?
题目链接(力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台)
int search(vector& nums, int target) {
int left = 0, right = nums.size()-1;
while(left <= right){
int mid = (left + right)/2;
if(nums[mid] > target) //要查找的目标值在左区间
right = mid - 1;
else if(nums[mid] < target) //要查找的目标值在右区间
left = mid + 1;
else
return mid;
}
return -1;
}
题目链接(力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 )
vector searchRange(vector& nums, int target) {
if(nums.size() == 0)
return {-1, -1};
int begin = 0, end = 0;
//处理begin
int left = 0, right = nums.size()-1;
while(left < right){
int mid = (left + right)/2;
if(nums[mid] < target) //目标值在右区间
left = mid + 1;
else
right = mid;
}
if(nums[left] != target)
return {-1, -1};
else
begin = left;
//处理end
left = 0, right = nums.size()-1;
while(left < right){
int mid = (left + right + 1)/2;
if(nums[mid] <= target) //目标值在右区间
left = mid;
else
right = mid - 1;
}
end = right;
return {begin, end};
}
所以不管是区间还是单个元素的问题,我们可以总结一个通用的模版:
处理区间左端点:
int left = 0, right = nums.size()-1;
while(left < right){
int mid = (left + right)/2;
if(nums[mid] < target)
left = mid + 1;
else
right = mid;
}
通过 nums[mid] < target 这个条件来不断逼近目标值区间的左端点,最终left和right一起指向目标值区间的左端点。
处理区间右端点:
int left = 0, right = nums.size()-1;
while(left < right){
int mid = (left + right + 1)/2;
if(nums[mid] <= target)
left = mid;
else
right = mid - 1;
}
通过 nums[mid] > target 这个条件来不断逼近目标值区间的右端点,最终left和right一起指向目标值区间的右端点。