- Day31-【AI思考】-深度学习方法论全解析——科学提升学习效率的终极指南
一个一定要撑住的学习者
#AI深度思考学习方法人工智能
文章目录深度学习方法论全解析——科学提升学习效率的终极指南**一、影子跟读法(Shadowing)——听力突破核武器****二、番茄工作法(Pomodoro)——时间管理手术刀****三、费曼技巧(FeynmanTechnique)——知识内化加速器****四、康奈尔笔记(CornellNotes)——信息处理引擎**效能倍增组合技常见问题解决方案深度学习方法论全解析——科学提升学习效率的终极指南
- 跨平台物联网漏洞挖掘算法评估框架设计与实现申报书上
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网项目申报跨架构静态分析固件
本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性一、项目技术路线(1)构建统一规范全面的多架构物联网设备二进制程序数据集(2)针对跨架构下的二进制程序,利用逆向工具提取为图、抽象语法树等中间语言,对于不同中间语言,选择合适的深度学习方法提取出中间语言数据结构的特征,
- 聊聊AI中的“蒸馏”技术
自由鬼
行业发展IT应用探讨产品分析对比人工智能深度学习机器学习
一、什么是“蒸馏”技术“蒸馏”技术实际上是指知识蒸馏(KnowledgeDistillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。1.知识蒸馏的过程教师模型(TeacherModel)训练先训练一个大规模基础模型,这个模型能力很强,但计算开销大。生
- AI:263-强化学习在自动驾驶领域的应用与前沿挑战
一键难忘
精通AI实战千例专栏合集自动驾驶汽车强化学习人工智能
强化学习在自动驾驶中的应用与挑战自动驾驶汽车是当前人工智能和机器学习的热门研究方向,而强化学习(ReinforcementLearning,RL)因其在复杂动态环境中的决策能力,成为推动自动驾驶技术的重要工具。本文将探讨强化学习在自动驾驶中的应用、面临的挑战,并提供一个简单的代码实例以展示如何在自动驾驶中应用强化学习。1.强化学习的基础概念强化学习是一种通过试错的方式来学习最佳策略的机器学习方法。
- 高效学习方法分享:提升学习效率与深度的实用技巧
威哥说编程
学习方法
学习是一个不断积累与优化的过程。无论你是学生、职场新人,还是希望提升自己的专业技能,掌握高效的学习方法都至关重要。在这篇文章中,我们将分享一些提升学习效率的策略,帮助你在有限的时间内获取更多的知识,且能记得更牢靠、理解得更透彻。一、理解学习的本质:主动学习VS被动学习在学习过程中,区分主动学习和被动学习至关重要。被动学习通常指的是通过听、看、读等方式接受信息,而主动学习则是指积极地进行思考、讨论、
- 高效学习方法分享
网络安全我来了
IT技术学习方法
高效学习方法分享引言在信息高速发展的今天,学习已经成为每个人不可或缺的一部分。你是否曾感到学习的疲惫,信息的爆炸让你无从下手?今天,我们将探讨几种高效的学习方法,帮助你从中找到适合自己的学习之道。关于学习,常常有人问:“我们如何才能真正掌握所学的知识?”本篇文章将给你答案。1.高效学习的方法概述1.1金字塔学习模型想象一下,学习就像筑造一座金字塔。底层的知识打牢了基础,越往上走,留存率就越高。金字
- Day29(补)-【AI思考】-精准突围策略——从“时间贫困“到“效率自由“的逆袭方案
一个一定要撑住的学习者
#AI深度思考学习方法人工智能unity游戏引擎
文章目录精准突围策略——从"时间贫困"到"效率自由"的逆袭方案**第一步:目标熵减工程(建立四维坐标)**与其他学习方法的结合**第二步:清华方法本土化移植**与其他工具对比**~~第三步:游戏化改造方案~~****第四步:环境重塑工程****第五步:技术杠杆矩阵****第六步:风险对冲策略**可行性验证模型甘特图OKR看板精准突围策略——从"时间贫困"到"效率自由"的逆袭方案让思想碎片重焕生机的
- 【高效学习方法分享】费曼学习法
AI天才研究院
每月推书学习
费曼学习法费曼学习法是美国著名物理学家理查德·费曼总结出来的一种学习方法。费曼学习法的核心是:“用转述、教给别人的方法巩固自己的知识”。具体步骤包括四个步骤:确定学习目标:将一个自己不理解的、没见过的概念或难题写在纸上。像老师一样教给别人:模拟自己是一位老师,面对完全不懂这个领域的人,用自己的话,尽可能具体形象地讲诉。回顾:找到漏洞,重新学习反思第2步遇到的问题,哪些地方卡壳了?哪些地方对方没有真
- 从脑科学角度分析高效学习方法
ka__ka__
经历思考学习方法
从脑科学角度分析高效学习方法先说说为什么要从脑科学角度分析高效学习方法。很多时候,关于高效学习方法,人们往往都是参考成功人士或者大神学霸的经验分享。但是,这种非常个人化并且主观性很强的东西一般没有很强的广泛使用性。那么如何找到更加科学的更加客观的高效学习方法呢?针对这个问题,应该从事物本质出发,按照第一性原理来思考。从第一性原理分析,学习知识的本质在某种程度上就是让大脑对特定的知识产出对应的神经网
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- [论文总结] 深度学习在农业领域应用论文笔记14
落痕的寒假
论文总结深度学习论文阅读人工智能
当下,深度学习在农业领域的研究热度持续攀升,相关论文发表量呈现出迅猛增长的态势。但繁荣背后,质量却不尽人意。相当一部分论文内容空洞无物,缺乏能够落地转化的实际价值,“凑数”的痕迹十分明显。在农业信息化领域的顶刊《ComputersandElectronicsinAgriculture》中也大面积存在。众多论文在研究方法上存在严重缺陷,过于简单粗放。只是机械地把深度学习方法生硬地套用到特定农业问题中
- 1. Python Web 框架要点
徐红珍
pythondjango
PythonWeb框架要点1.Web应用程序处理流程2.Web程序框架的意义用于搭建Web应用程序免去不同Web应用相同代码部分的重复编写,只需关心Web应用核心的业务逻辑实现3.Web应用程序的本质接收并解析HTTP请求,获取具体的请求信息处理本次HTTP请求,即完成本次请求的业务逻辑处理构造并返回处理结果——HTTP响应百度ip地址:14.215.177.394.Web框架学习方法如何搭建工程
- 人脸识别的经典深度学习方法
明初啥都能学会
深度学习人工智能
人脸识别的经典深度学习方法引言1.卷积神经网络(CNN)1.1LeNet1.2AlexNet1.3VGGNet1.4ResNet2.人脸检测2.1Viola-Jones算法2.2基于深度学习的人脸检测3.人脸特征提取3.1主成分分析(PCA)3.2人脸对齐3.2.1基于特征点的对齐3.2.2基于深度学习的对齐4.人脸识别模型4.1传统机器学习方法4.2基于深度学习的方法5.公式解读5.1卷积运算5
- 信息系统项目管理师考试概述与备考策略
Evaporator Core
系统架构设计师软考信息系统项目管理师基础班信息系统项目管理师提高班系统架构性能优化
引言信息系统项目管理师(以下简称“软考高项”)是中国计算机技术与软件专业技术资格(水平)考试中的高级资格认证之一。该认证旨在评估考生在信息系统项目管理领域的理论知识和实践能力,涵盖项目管理的各个方面,包括项目启动、规划、执行、监控和收尾等。通过软考高项的认证,不仅能够提升个人职业竞争力,还能为企业提供高质量的项目管理人才。本文将系统介绍软考高项考试的基本情况、考试内容、备考策略以及学习方法,帮助考
- 【llm对话系统】RL强化学习的技术演进与RLHF
kakaZhui
人工智能chatgptllama
一、强化学习基础知识强化学习(ReinforcementLearning,RL)是一种机器学习方法,它通过智能体(Agent)与环境(Environment)的交互来学习如何行动以最大化累积奖励(Reward)。1.核心概念:智能体(Agent):做出决策并采取行动的学习者。环境(Environment):智能体所处的外部世界,对智能体的行动做出反应。状态(State,S):对环境当前情况的描述。
- “随机森林”及“混合随机森林和多目标粒子群优化”(RF_MOPSO),以预测目标作为学习方法并分别找到多特征过程的最佳参数(Matlab代码实现)
科研_研学社
随机森林学习方法matlab
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2.1算例12.2算例23参考文献4Matlab代码实现1概述多目标优化问题普遍涉及到工程设计、生产制造、信息处理等应用领域。粒子群优化算法具有快速收敛、简单易行、并行搜索等特点,特别适合处理多目标优化问题。本文对多目标粒子群优化算法进行系统性的研究,结合随机森林的优势
- 自主学习与自然语言处理的融合:实现更智能的聊天机器人
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍自主学习(autonomouslearning)是一种学习方法,它允许机器人或计算机系统在没有人类干预的情况下自行学习和改进。自主学习可以帮助机器人或计算机系统更好地适应新的环境和任务,提高其智能性和效率。自然语言处理(naturallanguageprocessing,NLP)是计算机科学和人工智能领域的一个分支,它涉及计算机如何理解、处理和生成人类语言。自主学习与自然语言处理的融合
- 0基础跟德姆(dom)一起学AI 自然语言处理22-fasttext文本分类
跟德姆(dom)一起学AI
人工智能自然语言处理分类python深度学习transformer
1文本分类介绍1.1文本分类概念文本分类的是将文档(例如电子邮件,帖子,文本消息,产品评论等)分配给一个或多个类别.当今文本分类的实现多是使用机器学习方法从训练数据中提取分类规则以进行分类,因此构建文本分类器需要带标签的数据.1.2文本分类种类二分类:文本被分类两个类别中,往往这两个类别是对立面,比如:判断一句评论是好评还是差评.单标签多分类:文本被分入到多个类别中,且每条文本只能属于某一个类别(
- 2025年美赛数学建模 Problem C: Models for Olympic Medal Tables 问题 C:奥运奖牌榜模型 详细解析和代码(持续更新中,2025美赛)
2025年数学建模美赛
2025年美赛MCM/ICM数学建模开发语言2025年数学建模美赛2025美赛C题奥运奖牌榜模型
目录Python代码MATLAB代码2.模型框架2.1回归分析模型2.2集成学习方法2.3时间序列预测2.4模型不确定性估计3.数据处理与模型训练4.预测2028年奥运奖牌5.预测区间和不确定性6.哪些国家可能提高或下降?7.尚未获得奖牌的国家的预测8.奥运项目与奖牌数的关系2.教练与国家奖牌数的关联2.1定义“伟大教练”效应2.2数据分析方法2.3分析结果3.选择三个国家并确定应投资的运动项目3
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
加德霍克
机器学习人工智能python学习作业
一、KNN算法概念K最近邻(K-NearestNeighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。二、对鸢尾花数据集进行预测1、代码示例:fromsklearn.datasetsimportl
- 架构开场介绍&&环境准备
Jsben
架构linux
第0章学习方法的变化1.第一阶段学习方法1.记命令80-1502.记参数常用3-5个3.练习考试题手写4.回顾总结2.第二阶段学习方法1.理解思考提问2.应用场景干嘛用的怎么用3.安装部署配置文件启动测试关闭4.各种报错看日志看日志看日志收集整理5.英文单词量积累不然看不懂报错第1章综合架构开场介绍中小规模网站架构组成顾客–用户访问网站的人员保安–防火墙(firewalld)进行访问策略控制迎宾–
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- Nginx UI:一款开源的Nginx可视化管理界面,让你轻松管理nginx的配置
小华同学ai
nginxui开源
嗨,大家好,我是小华同学,关注我们获得“最新、最全、最优质”开源项目和工作学习方法NginxUI是由0xJacky和Hintay共同开发的一款Nginx网络管理界面。它旨在为Nginx提供一个易于使用的图形界面,让用户可以在线查看服务器状态、编辑配置文件、管理网站和证书等。想要一睹为快?访问https://demo.nginxui.com/使用以下凭据登录:用户名:admin密码:admin特色功
- C#的学习方法和思路,全部整理在这了!
编程乐趣
c#学习方法开发语言
大家好,我是编程乐趣。今天梳理下,我从写公众号以来,发表过的有关学习编程的自学方法、架构、学习路线、重构、编程经验等内容,希望对大家有点启发。一、自学编程的方法用这个方法学习C#的,一年后都变成高级工程师了!自学C#,要懂得善用MSDN自学C#,要懂得用好对象浏览器C#自学建议:避开新手易犯的错误一个很简单却能让你快速掌握C#的方法二、学习架构的思考DDD与三层架构,一定就是DDD好?程序员,真有
- 一文读懂:无监督学习与有监督学习的区别与应用
码上飞扬
学习
在机器学习的世界里,无监督学习和有监督学习是两个最为常见且重要的概念。理解这两者的区别和应用场景,不仅有助于我们选择合适的算法和模型,还能帮助我们更好地解决实际问题。那么,什么是无监督学习和有监督学习呢?本文将带你详细了解这两种学习方式的定义、区别以及典型应用。目录无监督学习是什么?有监督学习是什么?无监督学习与有监督学习的主要区别无监督学习的典型应用有监督学习的典型应用如何选择合适的学习方法?1
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR