线程状态:创建、就绪、阻塞、执行、死亡
多个线程到就绪状态时统一听从cpu的调度运行
停止线程的2个方式
1.建议正常停止-->设置次数,不要陷入死循环
2.使用标志位
不要使用JDK中不建议或已经过时的方法
以下是标志位结束代码:
public class Demo implements Runnable{
private boolean flag = true;
@Override
public void run() {
int i=0;
while (flag){
System.out.println("第"+i+"次循环");
i++;
}
}
public void stop(){
this.flag = false;
}
public static void main(String[] args) {
Demo demo = new Demo();
new Thread(demo).start();
for (int i = 0;i < 1000;i++){
System.out.println("main第"+i+"次循环");
if (i == 900){
demo.stop();
System.out.println("线程结束");
}
}
}
}
Thread.sleep(毫秒);
注意:sleep存在异常,使用try..catch来获取异常并解决
sleep可以模拟网络延时
sleep到达时间后线程回归就绪状态
每一个对象都有一把锁,sleep不会释放锁
首先需要导入java工具包 java.util.Date
获取当前时间new Date(System.currentTimeMillis())返回一个时间
如果要简化打印出的时间则需再导入包java.text.SimpleDateFormat
使用方法new SimpleDateFormat(显示方式).format(简化对象)
以下是打印时间的代码:
import java.text.SimpleDateFormat;
import java.util.Date;
public class Demo{
public static void main(String[] args) {
int num = 0;
Date startTime = new Date(System.currentTimeMillis());
while (true){
try {
Thread.sleep(1000);
System.out.println(new SimpleDateFormat("HH:mm:ss").format(startTime));
System.out.println(startTime);
startTime = new Date(System.currentTimeMillis());
num++;
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
if (num == 10){
break;
}
}
}
}
Thread.yield();
礼让不一定会成功,看cpu
本质是将线程从执行状态转为就绪状态
例子:
public class demo {
public static void main(String[] args) {
MyYield A = new MyYield();
new Thread(A,"a").start();
new Thread(A,"b").start();
}
}
class MyYield implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程开始执行");
Thread.yield();
System.out.println(Thread.currentThread().getName()+"线程停止执行");
}
}
可以理解为插队
语法:Thread.join()
将主线程转换为就绪状态,让插队的线程执行
插队例子:
public class Demo implements Runnable{
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("我是大哥,让我插队!");
}
}
public static void main(String[] args) {
Demo demo = new Demo();
Thread thread = new Thread(demo);
thread.start();
for (int i = 0; i < 300; i++) {
if(i==150){
try {
thread.join();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.println("排队中");
}
}
}
创建一个线程后可以利用:
引用变量.getState来获取一个返回的状态值
可以定义一个Thread.State类型的变量接收该返回值
线程一旦死亡就不能再次启动
线程优先级范围(1~10)优先级(priority)越高越有可能先进行,还需要看cpu,优先级高不一定先执行
设置优先级方法:引用变量.setPriority(优先级)
例子:
public class Demo{
public static void main(String[] args) {
//打印主线程优先级
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
MyPriority demo = new MyPriority();
Thread t1 = new Thread(demo,"t1");
Thread t2 = new Thread(demo,"t2");
Thread t3 = new Thread(demo,"t3");
Thread t4 = new Thread(demo,"t4");
Thread t5 = new Thread(demo,"t5");
Thread t6 = new Thread(demo,"t6");
t1.start();
t2.setPriority(1);
t2.start();
t3.setPriority(4);
t3.start();
t4.setPriority(6);
t4.start();
t5.setPriority(7);
t5.start();
t6.setPriority(10);
t6.start();
}
}
class MyPriority implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"-->"+Thread.currentThread().getPriority());
}
}
可以利用Thread.currentThread.getPriority();获取当前线程的优先级
线程分为用户线程和守护线程
设置守护线程:
thread.setDeamon(false) 默认值为true,默认值是用户线程
当用户线程死亡时守护线程也会跟着结束
例子:
public class Demo {
public static void main(String[] args) {
God god = new God();
You you = new You();
Thread thread = new Thread(god);
//默认是false表示是用户线程
thread.setDaemon(true);
thread.start();
Thread thread1 = new Thread(you);
thread1.start();
}
}
class God implements Runnable{
@Override
public void run() {
while (true){
System.out.println("上帝保佑你");
}
}
}
class You implements Runnable{
@Override
public void run() {
for (int i = 0; i < 36500; i++) {
System.out.println("你在第"+i+"天开心的活着");
}
System.out.println("===goodbye!world!===");
}
}
当多个线程同时操作一份资源时十分不安全会导致数据紊乱,所以出现了锁机制,所有线程呈队列形式排队访问资源
1.当一个线程进行访问时,线程就会拿到锁,其他线程必须等待,
2.这样会损失一定的性能
3.如果高优先级的在等待低优先级的线程释放锁,就会引起性能倒置
使用关键字synchronized(同步)对方法进行修饰就可以让线程排队操作资源
修饰方法时锁住的是this,一个类中的方法被锁住时
当然这有一定的缺陷,当类1的数据在类2中的方法修改时,synchronized方法就无法奏效,所以有同步块的出现
语法:synchronized(锁住的对象){语法块}
同步方法案例:
public class Demo1 implements Runnable{
private int tick = 10;
@Override
public synchronized void run() {
while (true){
if (tick<=0){
break;
}
try {
Thread.sleep(200);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(Thread.currentThread().getName()+"拿到了第"+(tick--)+"张票");
}
}
public static void main(String[] args) {
Demo1 thedemo = new Demo1();
new Thread(thedemo,"小明").start();
new Thread(thedemo,"陈平安").start();
new Thread(thedemo,"黄老师").start();
}
}
同步块案例:
public class Demo2 {
public static void main(String[] args) {
Account account = new Account(100,"创业基金");
Drawing You = new Drawing(account,50,"你");
Drawing Company = new Drawing(account,100,"Company");
You.start();
Company.start();
}
}
class Account{
int money;
String name;
public Account(int money,String name){
this.money =money;
this.name = name;
}
}
class Drawing extends Thread{
Account account;
int drawingMoney;
int nowMoney;
public Drawing(Account account,int drawingMoney,String name){
super(name);
this.account = account;
this.drawingMoney = drawingMoney;
}
@Override
public void run() {
synchronized(account){
if (account.money - drawingMoney < 0){
System.out.println(Thread.currentThread().getName()+"余额不足!");
return;
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
account.money = account.money - drawingMoney;
nowMoney = nowMoney + drawingMoney;
System.out.println(account.name+"余额为:"+account.money);
System.out.println(this.getName()+"手里的钱"+nowMoney);
}
}
}
解决了线程数组的不安全性,也可以自己使用synchronized方法来解决
要导入包 java.util.concurrent.CopyOnWriteArrayList
import java.util.concurrent.CopyOnWriteArrayList;
public class Demo {
public static void main(String[] args) {
CopyOnWriteArrayList list = new CopyOnWriteArrayList();
for (int i = 0; i < 10000; i++) {
new Thread(()->{
list.add(Thread.currentThread().getName());
}).start();
}
try {
Thread.sleep(2000);
} catch (Exception e) {
throw new RuntimeException(e);
}
System.out.println(list.size());
}
}
当两个进程各持有一个锁,相互争夺对方手中的锁时,就形成了死锁
synchronized语法块没有结束时资源仍是被锁住的
以下案例可以说明,当把两个synchronized语法块放在一起时就形成了死锁
public class DeadLock {
public static void main(String[] args) {
Makeup g1 = new Makeup(0,"灰姑娘");
Makeup g2 = new Makeup(1,"白雪公主");
g1.start();
g2.start();
}
}
class Lipstick{
}
class Mirror{
}
class Makeup extends Thread{
static Lipstick lipstick = new Lipstick();
static Mirror mirror = new Mirror();
int choice;
String girlName;
Makeup(int choice,String girlName){
this.choice = choice;
this.girlName = girlName;
}
@Override
public void run() {
makeup();
}
private void makeup(){
if (choice == 0){
synchronized (lipstick){
System.out.println(this.girlName+"获得口红的锁");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
synchronized (mirror){
System.out.println(this.girlName+"获得镜子的锁");
}
}else {
synchronized (mirror){
System.out.println(this.girlName+"获得镜子的锁");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
synchronized (lipstick){
System.out.println(this.girlName+"获得镜子的锁");
}
}
}
}
lock锁是显式锁,需要主动开始和关闭,只有代码块锁
首先需要定义lock值 ReentrantLock lock = new ReentrantLock();
加锁 lock.lock();
解锁 lock.unlock();
注意:
1.需要导入包 java.util.concurrent.locks.ReentrantLock
2.如果语句有异常,需要将解锁放入finally语句中
使用优先级:Lock>同步方法块>同步方法
ReentrantLock 可重复锁
synchronized是隐式锁,自动开始和关闭
例子:
import java.util.concurrent.locks.ReentrantLock;
public class Demo {
public static void main(String[] args) {
TestLock2 demo = new TestLock2();
new Thread(demo).start();
new Thread(demo).start();
new Thread(demo).start();
}
}
class TestLock2 implements Runnable{
int ticketNums = 10;
//定义lock值
private final ReentrantLock lock = new ReentrantLock();
@Override
public void run() {
while (true){
//加锁
try {
lock.lock();
if (ticketNums >0){
try {
Thread.sleep(1000);
} catch (Exception e) {
throw new RuntimeException(e);
}
System.out.println(ticketNums--);
}else {
break;
}
} finally {
//解锁
lock.unlock();
}
}
}
}
涉及两个新方法 wait与notifAll
wait 让线程回到就绪状态并释放锁
notifAll 让线程回到执行状态
消费者和生产者之间实现通讯
当产品生产满库(缓冲区)时通知消费者消费,消费结束通知生产者可以开始生产
例子:
//生产者,消费者,产品,缓冲区
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
//生产者
class Productor extends Thread{
SynContainer container;
public Productor(SynContainer container){
this.container = container;
}
//生产
@Override
public void run() {
for (int i = 0; i < 100; i++) {
container.push(new Chicken(i));
System.out.println("生产了"+i+"只鸡");
}
}
}
//消费者
class Consumer extends Thread{
SynContainer container;
public Consumer(SynContainer container){
this.container = container;
}
//消费
@Override
public void run() {
for (int i = 0; i < 100; i++) {
System.out.println("消费了-->"+container.pop().id+"只鸡");
}
}
}
//产品
class Chicken{
int id;
public Chicken(int id) {
this.id = id;
}
}
//缓冲区
class SynContainer{
//需要一个容器大小
Chicken[] chickens = new Chicken[10];
//容器计数器
int count = 0;
//生产者放入产品
public synchronized void push(Chicken chicken){
//如果容器满了,就需要等待消费者消费
if (count == chickens.length){
try {
this.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
//通知消费者消费,生产等待
}
//如果没有满,我们就需要丢入产品
chickens[count] = chicken;
count++;
//可以通知消费者消费了
this.notifyAll();
}
//消费者消费产品
public synchronized Chicken pop(){
if (count == 0){
//等待生产者生产,消费者等待
try {
this.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
//如果可以消费
count--;
Chicken chicken = chickens[count];
//吃完了,通知生产者生产
this.notifyAll();
return chicken;
}
}
设立标志位来达成双方的通讯
例子:
//测试生产者消费者问题2:信号灯法,标志位解决
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
//生产者-->演员
class Player extends Thread{
TV tv;
public Player(TV tv){
this.tv =tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if (i%2==0){
this.tv.play("快乐大本营播放中");
}else {
this.tv.play("抖音:记录美好生活");
}
}
}
}
//消费者-->群众
class Watcher extends Thread{
TV tv;
public Watcher(TV tv) {
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
tv.watch();
}
}
}
//产品-->节目
class TV{
//演员表演,观众等待 T
//观众观看,演员等待 F
String voice; //表演的节目
boolean flag = true;
//表演
public synchronized void play(String voice){
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.println("演员表演了:"+voice);
//通知观众观看
this.notifyAll(); //通知唤醒
this.voice = voice;
this.flag =! this.flag;
}
//观看
public synchronized void watch(){
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.println("观众观看了"+voice);
//通知演员表演
this.notifyAll();
this.flag =!this.flag;
}
}
经常创建和销毁、使用量特别大的资源,比如并发情况下的线程,对性能影响很大
要解决此问题有以下思路:提前创建很多个线程,放入线程池中,使用时直接获取,使用完放回池中,可以避免频繁创建销毁、实现重复利用
优点:
1.提高响应速度(减少了创建新线程的时间)
2.降低资源消耗
3.便于线程管理
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
//测试线程池
public class TestPool {
public static void main(String[] args) {
//1.创建服务,创建线程池
//newFixedThreadPool 参数为:线程池大小
ExecutorService service = Executors.newFixedThreadPool(10);
//执行
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
//2.关闭链接
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}