文档讲解:买卖股票的最佳时机III 买卖股票的最佳时机IV
题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iii/description/
思路:
这题比前两题难,关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
一天一共就有五个状态:没有操作 (其实我们也可以不设置这个状态);第一次持有股票;第一次不持有股票;第二次持有股票;第二次不持有股票。
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
达到dp[i][1]状态,有两个具体操作:
操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
dp[i][2]、dp[i][3]、dp[i][4]同理。
对于初始化来说,第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
当天买入,当天卖出,所以dp[0][2] = 0;
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
同理第二次卖出初始化dp[0][4] = 0;
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
核心代码:
class Solution {
public:
int maxProfit(vector& prices) {
if (prices.size() == 0) return 0;
vector> dp(prices.size(), vector(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};
题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/
思路:
类似上道题的思路。
使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]
j的状态表示为:
0 表示不操作
1 第一次买入
2 第一次卖出
3 第二次买入
4 第二次卖出
除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
递推公式、初始化、遍历顺序按照上道题来就行了。
核心代码:
class Solution {
public:
int maxProfit(int k, vector& prices) {
if (prices.size() == 0) return 0;
vector> dp(prices.size(), vector(2 * k + 1, 0));
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
for (int i = 1;i < prices.size(); i++) {
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[prices.size() - 1][2 * k];
}
};
这次的题学习时长3h,题难度加大了,我原本的思路应该优化下也能做,但我没时间改了,后面补。
快返校了,接着论文idea,头大。