POJ3301 Texas Trip

这题的大意是在整数坐标上,给定一些点,问说覆盖这些点的最小的正方形的面积,好像黑书上有道类似的,把正方形改成矩形,对于那道题的解法好像是,考虑到最后矩形至少会有一条边上有两个以上的点,所以枚举两个点,可能生成这个矩形,这样就把可能旋转的角度给离散化了,并且复杂度只有O(N^2)的,或者可能都有旋转卡壳的方法来解这个。但对于这道题,不知道这样离散可不可以,但想法都是把枚举数量减少下来,这里用到逼近迭代,就是先m分枚举范围,从中找到最小的,然后再在那个区间m分,这样迭代下去。

感谢:

http://hi.baidu.com/liugoodness/blog/item/1aaebb16494b314320a4e9ad.html
http://hi.baidu.com/czyuan_acm/blog/item/8cc45b1f30cefefde1fe0b7e.html

代码
   
     
#include < iostream >
#include
< string >
#include
< vector >
#include
< map >
#include
< set >
#include
< queue >
#include
< math.h >
using namespace std;

const int MAX = 305 ;
const double PI = asin( 1.0 ) * 2 ;
const double EPS = 1e - 6 ;

int n;
double x[MAX];
double y[MAX];
double xx[MAX];
double yy[MAX];

double check( double a)
{
double minx = 1000000 ;
double maxx = - minx;
double miny = minx;
double maxy = maxx;
for ( int i = 0 ; i < n; i ++ )
{
xx[i]
= cos(a) * x[i] + sin(a) * y[i];
yy[i]
= - sin(a) * x[i] + cos(a) * y[i];
minx
= min(minx, xx[i]);
maxx
= max(maxx, xx[i]);
miny
= min(miny, yy[i]);
maxy
= max(maxy, yy[i]);
}
double e = (maxx - minx) > (maxy - miny) ? (maxx - minx) : (maxy - miny);
return e * e;
}

double go()
{
int m = 800 ;
int times = 60 ;
double begin = 0 ;
double end = PI / 3 ;
double res = - 1 ;
double from;

double a;
double da;

while (times -- )
{
a
= begin;
da
= (end - begin) / m;

for ( int i = 0 ; i < m; i ++ )
{
double t = check(a + da * i);
if (res == - 1 || t < res)
{
res
= t;
from
= a + da * i;
}
}

begin
= from - da;
end
= from + 2 * da;
}

return res;
}

int main()
{
int T;
scanf(
" %d " , & T);
while (T -- )
{
scanf(
" %d " , & n);
for ( int i = 0 ; i < n; i ++ ) scanf( " %lf%lf " , & x[i], & y[i]);
printf(
" %.2lf\n " , go());
}
}

 

你可能感兴趣的:(poj)