- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 数字孪生下的智慧城市(城市大脑)建设方案——建模层
百态老人
智慧城市人工智能
要构建城市信息模型(CIM)、建筑信息模型(BIM)及仿真模型,并实现L3级精度的核心区三维建模,需结合多源数据与多层级标准,具体步骤如下:1.CIM建模层构建L3级精度标准定义CIM模型分为7级(CIM1-CIM7),其中CIM3级对应标准模型,需满足以下要求:三维框架表达:包括建筑物、道路、场地、管线等实体的基本结构。内外表面建模:用倾斜摄影、BIM或CAD数据细化建筑内外表面细节。数据源:卫
- Task01:线性回归;Softmax与分类模型、多层感知机
恰人陈
pytorch机器学习深度学习神经网络
一、mxnet相关函数用法mxnet.nd用法对标numpy库(1)nd.concatfrommxnetimportndnd.concat(X,Y,dim=0)nd.concat(X,Y,dim=1)X,Y为两个矩阵nd.concat为连接矩阵,dim表示连接的维度,若原来两个矩阵为(4,3),dim=0就表示新生成矩阵为(8,3)dim=1表示新生成矩阵为(4,6)(2)y+=xy=y+x这样的
- 【论文笔记】基于图神经网络的多视角视觉重定位 GRNet CVPR 2020 论文笔记
phy12321
相机重定位
GRNet:LearningMulti-viewCameraRelocalizationwithGraphNeuralNetworks驭势科技,北京大学机器感知重点实验室,北京长城航空测控技术研究所本文提出了一种使用多视角图像进行相机重定位的图神经网络。该网络可以使得不连续帧之间进行信息传递,相比于只能在相邻前后帧之间进行信息传递的序列输入和LTSM,其能捕获更多视角信息以进行重定位。因此LSTM
- 【单层神经网络】基于MXNet库简化实现线性回归
辰尘_星启
神经网络mxnet线性回归
写在前面同最开始的两篇文章完整程序及注释'''导入使用的库'''#基本frommxnetimportautograd,nd,gluon#模型、网络frommxnet.gluonimportnnfrommxnetimportinit#学习frommxnet.gluonimportlossasgloss#数据集frommxnet.gluonimportdataasgdata'''生成测试数据集'''#
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- SaaS架构详解
Rainbow酱
架构sasspaas
SaaS架构详解架构图IaaS层定义基础设施即服务(Infrastructure-as-a-Service),指把IT基础设施作为一种服务通过网络对外提供,并根据用户对资源的实际使用量或占用量进行计费的一种服务模式。作用在这种服务模型中,普通用户不用自己构建一个数据中心等硬件设施,而是通过租用的方式,利用Internet从IaaS服务提供商获得计算机基础设施服务,包括服务器、存储和网络等服务。内容
- 线性回归基础学习
Remoa
人工智能线性回归优化gluonmxnetloss
线性回归基础学习目录:理论知识样例代码测试参考文献一、理论知识线性回归思维导图NDArray:MXNet中存储和变换数据的主要工具,提供GPU计算和自动求梯度等功能线性回归可以用神经网络图表示,也可以用矢量计算表示在Gluon中,data模块提供了有关数据处理的工具,nn模块定义了大量神经网络的层,loss模块定义了各种损失函数在MXNet的init模块(initializer)提供了模型参数化的
- 基于Stackelberg博弈的光伏用户群优化定价模型(Matlab代码实现)
砌墙_2301
matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3文献来源4Matlab代码、数据、文章下载1概述文献来源:摘要:在由多主体组成的光伏用户群中,用户间存在光伏电量共享。然而,在现有的分布式光伏上网政策下,用户间的共享水平很低。为了提高用户间光伏电量共享水平,根据用户的用电特性,构建了光伏用
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- 跟李沐学AI:视频生成类论文精读(Movie Gen、HunyuanVideo)
Landy_Jay
人工智能
MovieGen:ACastofMediaFoundationModels简介MovieGen是Meta公司提出的一系列内容生成模型,包含了3.2.1预训练数据MovieGen采用大约100M的视频-文本对和1B的图片-文本对进行预训练。图片-文本对的预训练流程与Meta提出的Emu:Enhancingimagegenerationmodelsusingphotogenicneedlesinaha
- MATLAB 实现基于MPA(海洋捕食者算法)进行时间序列预测模型的项目详细实例
nantangyuxi
MATLABmatlab算法人工智能回归cnn支持向量机大数据
目录MTFSTLTFSB实她基她MPTFS(海洋捕食者算法)进行时间序列预测模型她项目详细实例...1项目背景介绍...1项目目标她意义...1项目挑战...2项目特点她创新...3项目应用领域...3项目效果预测图程序设计...4项目模型架构...5项目模型描述及代码示例...5项目模型算法流程图...6项目目录结构设计及各模块功能说明...7项目部署她应用...9项目扩展...11项目应该注意
- OpenAI紧急加播:ChatGPT上新深度搜索,持续思考30分钟输出1万字,刷榜“人类最后的考试”
量子位
就在开源的DeepSeek-R1被整合进各路AI搜索工具之际,OpenAI临时举行小型发布会。4点27通知,8点开始直播。ChatGPT上新“DeepResearch”,把推理大模型的思考能力用于联网搜索。据介绍,DeepResearch功能可在数十分钟完成人类专家需要几个小时的复杂研究任务。在“人类最后的考试”上,DeepResearch刷新了最高分,比o3-mini高推理设置分数高出一倍。该测
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- Mixture of Experts(MoE)学习笔记
南七小僧
人工智能网站开发医疗器械研发学习笔记人工智能MoE大模型
1学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在预训练新的大模型,在Llama2或其他模型上做Fine-tune,以及扩展大模型的ContextLength。12月8号
- 基于CNN(一维卷积Conv1D)+LSTM+Attention 实现股票多变量时间序列预测(PyTorch版)
矩阵猫咪
cnnlstmpytorch注意力机制卷积神经网络长短期记忆网络Attention
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。在深度学习的众多模型中,卷积神经网络(CNN)和长短期记忆网络(LSTM)因其独特的优势
- 周报 | 25.1.27-25.2.2文章汇总
双木的木
深度学习拓展阅读python拓展学习人工智能transformer算法深度学习YOLOchatgptllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.1.20-25.1.26文章汇总-CSDN博客机器学习AI算法工程|DeepSeekV3两周使用总结-CSDN博客Datawhale|一文详尽之SFT(监督微调,建议收藏)!-CSDN博客arXiv每日学术速递|强强联合:CNN与Transformer融合创新提升模型性能!!-CSDN博客AI生成未来|字节提出VideoWo
- CSS标准盒模型与怪异盒模型
DTcode7
HTML网站开发#前端基础入门三大核心之CSSHTMLCSSwebcss3网页开发
CSS标准盒模型与怪异盒模型基本概念与作用标准盒模型怪异盒模型示例一:比较标准盒模型与怪异盒模型示例二:使用box-sizing属性示例三:响应式布局中的应用示例四:解决布局问题示例五:创建复杂的背景效果实际工作中的使用技巧在CSS布局的世界里,盒模型是构建网页布局的基础。它定义了元素如何在页面上占据空间,以及元素的边距、边框、内边距和内容如何相互作用。本文将深入探讨两种盒模型——标准盒模型(St
- TVM:设计与架构
Adenialzz
tvm模型部署架构react.js前端
TVM:设计与架构本文档适用于想要了解TVM架构和/或积极开发项目的开发人员。页面组织如下:示例编译流程概述了TVM将模型的高层描述转换为可部署模块所采取的步骤。要开始使用,请先阅读本节。逻辑架构组件部分描述了逻辑组件。后面的部分是针对每个逻辑组件的特定指南,按组件的名称组织。设备/目标交互描述了TVM如何与每种支持的物理设备和代码生成目标进行交互。请查看开发人员操作指南以获取有用的开发技巧。本指
- 大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?
空间机器人
LLM语言模型学习笔记语言模型人工智能自然语言处理
大型语言模型(LLM)压缩技术:如何让庞然大物更轻巧?随着大模型在各个领域的广泛应用,我们面临的一个核心问题是——如何让这些庞大的模型在硬件资源有限的环境下运行?这就需要我们运用一系列的技术来“压缩”这些模型,使其在保持精度的同时,能够适应不同的硬件设备。那么,LLM压缩到底是如何实现的呢?让我们从几个关键技术开始讲解:剪枝(Pruning)、知识蒸馏(KnowledgeDistillation)
- Ollama 部署 DeepSeek - r1 教程:Windows 与 Linux 篇
Fgaoxing
windowslinux人工智能
在人工智能技术飞速发展的今天,能够在本地部署并使用先进的模型成为许多技术爱好者和专业人士的追求。DeepSeek-r1以其出色的性能备受关注,借助Ollama工具,我们可以方便地在Windows和Linux系统上完成部署。下面就为大家详细介绍具体步骤。一、准备工作在开始部署之前,需要确保已经安装了Ollama。如果尚未安装,请按照以下对应系统的安装方法进行操作。(一)Windows系统安装Olla
- M-Ped: Multi-Prompt Ensemble Decoding for Large Language Models
UnknownBody
LLMDailyLLMPromptprompt语言模型人工智能
本文是LLM系列文章,针对《M-Ped:Multi-PromptEnsembleDecodingforLargeLanguageModels》的翻译。M-Ped:大型语言模型的多提示集成解码摘要1引言2方法3实验4研究5相关工作6结论摘要随着大型语言模型(LLMs)在自然语言处理(NLP)领域的广泛应用,提高其性能已成为研究热点。本文提出了一种新的多提示集成解码方法,旨在通过利用多个提示的结果聚合
- SlimGPT: Layer-wise Structured Pruning for Large Language Models
UnknownBody
LLMDailyLLMPruning剪枝语言模型人工智能
本文是LLM系列文章,针对《SlimGPT:Layer-wiseStructuredPruningforLargeLanguageModels》的翻译。SlimGPT:大型语言模型的分层结构化修剪摘要1引言2相关工作3前言4方法5实验6结论摘要大型语言模型(LLM)因其在各个领域的卓越能力而受到广泛关注,其巨大的参数规模为实际部署带来了挑战。结构化修剪是一种平衡模型性能和效率的有效方法,但在计算资
- RabbitMQ架构设计原理
T_karine
RabbitMQjava开发语言
一、什么是消息中间件消息中间件基于队列模型实现异步/同步传输数据。作用:可以实现支撑高并发、异步、解耦、流量削峰。优点:由于RabbitMQ是erlang语言开发的,具有天生抗高并发的性能,吞吐量达到万级。1、什么是异步将一个任务中比较耗时的业务逻辑代码使用异步的方式去执行,可以提高响应速度。2、什么是解耦耦合:所谓耦合,指系统各功能、模块之间具有依赖性,依赖性越强、耦合度就越高,维护成本也就越高
- WebSocket与http协议对比
CY_U
websockethttp网络协议java
HTTP与WebSocket协议深度对比一、协议基础特性对比特性HTTP/1.1WebSocket(RFC6455)协议层定位应用层协议应用层协议(基于HTTP升级机制)传输层依赖TCPTCP默认端口80(HTTP)/443(HTTPS)80(WS)/443(WSS)通信模型请求-响应(半双工)全双工双向通信连接生命周期短连接(默认)或长连接(Keep-Alive)持久化长连接头部开销每个请求携带
- 有用的知识又增加了:如何让代码全面适配 Swift 6
大熊猫侯佩
Apple开发入门Swift6结构化并发数据竞争DataRaceActor结构和类MainActor
概述自从Swift并发模型首次引入async和await关键字以来,我就迫不及待的开始使用它们来进行异步代码的开发了。随着时间的推移,Swift并发模型变得越来越强大,它通过让Swift编译器识别潜在问题,提供了可靠的数据竞争安全保障。然而,在切换到Swift6版本后,大家面对代码中自动生成的所有警告和错误可能会显得束手无策。这里,我们将分享一些在代码库中适配Swift6严格并发模式(Strict
- 最小边际采样在分类任务中的应用
ningaiiii
机器学习与深度学习分类数据挖掘人工智能
最小边际采样在分类任务中的应用在机器学习的分类任务里,如何高效利用有限的标注数据,一直是研究的重点。最小边际采样(LeastMarginSampling)作为主动学习策略中的一种,为解决这一问题提供了独特的思路。本文将深入探讨最小边际采样在分类任务中的原理、应用以及优势与挑战。一、最小边际采样的原理最小边际采样的核心概念是基于模型预测概率来衡量样本的不确定性。在一个多分类问题中,模型会对每个样本预
- 《Inside VCL(深入核心——VCL架构剖析)》.(李维) 一
liang08114
delphiVCL
一、回到从前:1.1、多任务操作系统是如何设计和实现的?1.1.1、系统——多个应用程序方案1:(系统不断读取应用程序状态)系统通过大型循环(Loop)不断坚持么一个恶用用程序是否触发了特定的事件。方案2:(事件驱动模型——事件/消息处理模型)执行环境将事件转换成代表事件的消息,然后发送给对应的应用程序。//消息大概格式TMyMessage=packedrecord//用来存储事件信息Messag
- 交易系统:退款单模型设计详解
java
大家好,我是汤师爷~和退款单作为整个交易逆向系统的核心,支撑着售后管理环节。售后域核心概念模型1、退款单退款单是记录和跟踪退款处理过程的核心业务单据,包含以下关键信息:租户ID:标识所属商户或组织退款单ID:退款单的唯一标识原订单ID:关联的原始订单业务类型:仅退款、退货退款等退款类型:如全额退款、部分退款、按商品退款等创建时间:退款单生成的时间退款状态:反映当前售后处理阶段退款原因:记录具体退款
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,